

Oxnard Airport

Runway 7-25, Taxiway Connectors, and Parallel Taxiway Pavement Reconstruction

DOA 20-02; OXR-146 FAA AIP No. 3-06-0179-037-2020 (Design) FAA AIP No. 3-06-0179-038-2021 (Construction)

Prepared for:

County of Ventura Department of Airports

and the Federal Aviation Administration

Prepared by:

March 2021

INTENTIONALLY BLANK

Table of Contents

1.	EX	ECUTIVE SUMMARY	1
2.	GE	NERAL SCOPE OF THE PROJECT	2
2.1		INTRODUCTION	2
2.2		SCOPE OF WORK	2
2.3	١.	HISTORY OF THE EXISTING SYSTEM	3
2.4		PAVEMENT CLASSIFICATION NUMBER	4
2.5	j.	FAA ADVISORY CIRCULAR 150/5300-13A ANALYSIS	4
3.	PH	OTOGRAPHS	8
4.	DE	SIGN STANDARDS	8
5.	то	POGRAPHIC SURVEYS1	0
6.	GE	OTECHNICAL INVESTIGATION1	0
7.	PA	VEMENT DESIGN EVALUATION1	2
7.1	•	AIRCRAFT FLEET MIX	2
7.2		PAVEMENT DESIGN OPTIONS	2
7.2	2.1.	Runway Rehabilitation Option1	3
7.2	2.2.	Runway Reconstruction Options1	3
7.2	2.3.	Runway Comparative Analysis1	5
7.2	2.4.	Taxiway Reconstruction Options1	6
7.2	2.5.	Taxiway Comparative Analysis1	7
7.3	ł.	LIFE CYCLE COST ANALYSIS1	8
8.	со	NSIDERATIONS FOR AIRPORT OPERATIONAL SAFETY 1	9
8.1		CONSTRUCTION SAFETY AND PHASING ANALYSIS 1	9
8.2		CONSTRUCTION SAFETY AND PHASING PLAN	9
9.	SU	RFACE GRADIENT AND DRAINAGE DESIGN2	20
9.1		RUNWAY GENERAL SURFACE GRADIENT CONSIDERATIONS	20

Mead & Hunt

9.1	1.1.	First Quarter of Runway 7	21
9.1	1.2.	Middle Section of Runway 7-25	21
9.1	1.3.	First Quarter of Runway 25	21
9.2		TAXIWAY GENERAL SURFACE GRADIENT CONSIDERATIONS	23
9.3		DRAINAGE CONSIDERATIONS	23
10.	AIF	RFIELD LIGHTING AND SIGNAGE	24
10.	1.	EXISTING AIRFIELD LIGHTING, SIGNAGE, AND NAVAIDS	24
10.	2.	AIRFIELD LIGHTING, SIGNAGE, AND NAVAID RECOMMENDATIONS	26
10).2.1	. Runway Recommendations	26
10).2.2	. Taxiway Recommendations	27
11.	NA	VAIDS AND FAA-OWNED FACILITIES	27
11.	1.	MALSF	27
11.2. GLIDESLOPE		GLIDESLOPE	28
11.	3.	LOCALIZER	
11.	.4.	PAPI	28
11.	5.	REILS	28
11.	6.	WIND CONE AND SEGMENTED CIRCLE	28
12.	PA	VEMENT MARKINGS	
13.	EN	VIRONMENTAL CONSIDERATIONS	
14.	UT	ILITY LINES IN WORK AREA	
15	DE	LINEATION OF AIP ELIGIBLE AND INELIGIBLE WORK ITEMS	30
16.	DB	E PARTICIPATION	
		OJECT SCHEDULE	
17.		DESIGN AND BIDDING SCHEDULE	
17.	2.	CONSTRUCTION SCHEDULE	31
18.	EN	GINEER'S ESTIMATE OF PROBABLE COST	

Mead & Hunt

Page ii of iii

\\Corp.meadhunt.com\\sharedfolders\\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report-Final compiled wAppdx.docx

19. PROJECT BUDGET	
20. RECOMMENDATIONS	33
APPENDICES	0
Appendix A – Project Layout Plan	1
Appendix B - 13A Analysis Summary	2
Appendix C - Site Photographs	3
Appendix D - Geotechnical Engineering Report	4
Part 1 – Geotechnical Engineering Reports	5
Part 2 – Addendum to Geotechnical Engineering Reports	6
Appendix E - Aircraft Fleet Mix	7
Appendix F - FAARFIELD Airport Pavement Design Reports	8
Appendix G - Life Cycle Cost Analysis	9
Appendix H - Construction Schedule	
Appendix I - Preliminary Runway Surface Analysis	11
Appendix J - Drainage Catchment Areas	
Appendix K - FAA CATEX Approval Letter	13
Appendix L - Engineer's Estimate of Probable Cost	14

INTENTIONALLY BLANK

1. EXECUTIVE SUMMARY

Mead & Hunt, Inc. (Mead & Hunt) has prepared this Engineer's Design Report (EDR) for the County of Ventura Department of Airports (County). The purpose of this report is to summarize the findings of the design efforts and to define the Project scope and recommendations for the improvements of the Runway 7-25, Taxiway Connectors, and Parallel Taxiway Pavement Reconstruction (Project) at Oxnard Airport (Airport). The scope of work for the design included the use of geotechnical analysis and topographic survey data obtained during the preliminary design to recommend a pavement improvement method and to design airfield improvements compliant with FAA Advisory Circulars.

Based on the findings obtained from the geotechnical analysis, the subgrade within the pavement limits presents inconsistent in-place moisture conditions and bearing capacity, which can lead to an uneven deterioration of the pavement over time. The information from the topographic survey revealed that the runway and associated taxiway connectors have several non-standard conditions for the proposed RDC of D-III, including: runway shoulders width, blast pad dimensions, runway object free area dimensions, runway safety area dimensions, runway longitudinal and transverse grading requirements, and runway centerline to parallel taxiway centerline separation distance.

Reconstruction and rehabilitation options were analyzed for improving the pavement condition on Runway 7-25. The pavement design analysis was conducted in accordance with Advisory Circular 150/5320-6F to accommodate a fleet mix including six operations a day of an Embraer E175 for commercial service and 500 operations per year of a Gulfstream G650. The rehabilitation pavement design options included pavement sections consisting of the existing aggregate base, new crushed aggregate base, and an asphalt concrete surface course. The reconstruction alternatives included options for reconstruction with pavement sections consisting of new crushed aggregate base and an asphalt concrete surface course. The impact of subgrade stabilization on reconstruction alternatives was also analyzed as part of the reconstruction options. For the taxiways, only the reconstruction alternatives were analyzed.

Based on the outcome of the pavement design analysis, the recommended option is to reconstruct Runway 7-25 with 4 inches of asphalt concrete, 8.5 inches of crushed aggregate base, and 16 inches of lime-treated subgrade. The preferred design alternative for the taxiways consists of 4 inches of asphalt surface course, 9 inches of crushed aggregate base course, and 16 inches of lime-treated subgrade. These options will allow uniform subgrade conditions, as well as favorable constructability and reduced construction costs compared to the rehabilitation alternative. Furthermore, the reconstruction will reduce the impact on Airport operations as it will allow a shorter closure for construction.

The reconstruction is also the most cost-effective option to correct non-standard conditions on the runway and taxiways. In fact, the reconstruction can achieve standard longitudinal and transverse slopes without significant changes to the runway elevation. This Project does not include correction or remedy of the RSA, ROFA, TSA, and TOFA slopes; these will be addressed as part of a separate project.

Electrical improvements are required as a result of the rehabilitation measures. All the in-pavement MALSF concrete bars will need to be reconstructed to match new pavement elevations. The electrical improvements for the reconstruction option will also include elevation adjustments to existing runway edge light cans, replacement of the runway edge light fixtures, new taxiway edge light cans and fixtures, FAA-owned MALSF Bars, new 5kV cable, new counterpoise system, and replacement of airfield guidance signs and distance remaining signs.

The total estimated Project construction cost is \$ 32,899,916.52.

Mead&Hunt

Page 1 of 34

2. GENERAL SCOPE OF THE PROJECT

2.1. INTRODUCTION

As stated above, Mead & Hunt has prepared this EDR for the County, which describes the design efforts undertaken for the Runway 7-25, Taxiway Connectors, and Parallel Taxiway Pavement Reconstruction Project at the Airport.

Oxnard Airport is a public use airport owned and operated by the County of Ventura Department of Airports. Located in the County of Ventura, west of Oxnard, California, the Airport has a single runway, designated Runway 7-25, which has five taxiway connectors, and one full-length parallel taxiway, currently designated Taxiway F. The current Runway Design Code (RDC) for Runway 7-25 is B-II, although the current Airport runway and taxiway connector pavement dimensions meet or exceed D-III standards. This report analyzes the proposed future condition of RDC D-III and Taxiway Design Group (TDG) 3. These designations are consistent with past historical use. The aviation forecast for an RDC D-III and a TDG 3 have been approved by the FAA as part of an Airport Layout Plan (ALP) update.

The Project will be funded by a combination of County funds and a grant from the Federal Aviation Administration (FAA).

2.2. SCOPE OF WORK

The Runway 7-25, Taxiway Connectors (A, B, C, D, and E), and Parallel Taxiway (F) Pavement Reconstruction Project consists of reconstructing the runway and taxiways at the Airport for the County. This Project will be designed and bid as a single bid package but will consist of a Base Bid and up to two Bid Alternates. The proposed breakdown is as follows:

Base Bid: Runway 7-25 reconstructionBid Alternate 1: Taxiway Connectors A-E reconstructionBid Alternate 2: Parallel Taxiway F reconstruction

The Project scope of work for the Base Bid consists of the analysis for improvement type, which will include reconstructing or rehabilitating all asphalt concrete (AC) pavement, full width, on Runway 7-25 and will require pavement transitions on Taxiway Connectors A, B, C, D, and E to match the existing grades in the event that Bid Alternate 1 is not awarded. Adjustments to the existing MALSF system are also included.

Bid Alternates 1 and 2 consist of the removal of existing pavement surface and excavating to subgrade; construction of a new pavement section and crushed aggregate base course shoulder; transition grading to existing ground; application of pavement markings; installation of an underdrain system and adjustments to the storm drain; and installation of new edge lights, counterpoise system, and grounding at an airfield lighting vault. In the event Bid Alternate 2 is not awarded, a Bid Alternate 1 transition has been designed.

Included in this report is a discussion and evaluation of the following items:

1) FAA Advisory Circular 150/5300-13A Change 1 analysis of the existing runway, including runway surface gradient requirements based on RDC of D-III standards.

- 2) Analysis of existing and proposed pavement features.
- 3) Pavement design evaluation, including subgrade sampling and analysis, evaluation of pavement improvement alternatives, and life cycle cost analysis.
- 4) Airfield lighting, signage, and navigation aid (NAVAID) analysis.
- 5) Airfield markings.
- 6) Construction safety and phasing analysis, including evaluation of construction duration and operational impacts.
- 7) Runway surface analysis.
- 8) Cost estimates.

2.3. HISTORY OF THE EXISTING SYSTEM

Runway 7-25 is 5,953 feet long by 100 feet wide and was most recently reconstructed in 1992. The runway was reconstructed with a pavement section consisting of a 50-foot wide keel section with 4 inches of asphalt pavement on 9 to 16 inches of aggregate base, and an outer 25-foot wide runway section consisting of 3 inches of asphalt pavement on 8 to 17 inches of aggregate base. Taxiway connectors were also most recently reconstructed in 1992. The taxiway connector pavement sections consist of a minimum of 4 inches of asphalt pavement on 3.5 to 12 inches of aggregate base and the parallel taxiway has a minimum of 2 inches of asphalt pavement on 2.5 to 10 inches of aggregate base.

A timeline of the major pavement rehabilitation and maintenance projects are listed below:

- **1992** Reconstruction of Runway 7-25 and connector taxiways. This project consisted of removing all existing pavement, trimming existing aggregate base to meet design grades, placing new aggregate base material over existing, and placing a new layer of AC pavement. The AC thickness was 4 inches within 25 feet from the runway centerline, 3 inches along the 25-foot outboard runway edge, and 4 inches on all connector taxiways.
- **2000** 2-inch AC overlay on Taxiway F. East of Taxiway C, the overlay was placed on top of a 1.5-inch leveling course within 20 feet from the Taxiway F centerline.
- **2003** Application of a rejuvenating seal on Runway 7-25 and a slurry seal on taxiway connectors A, B, C, D, and E.
- 2005 Taxiway F slurry seal.
- **2007** Extension of runup apron pavement at Taxiways A and E (shown as West Hangar Area and East Apron sections). The runup apron sections consisted of 8 inches of AB and 4 inches of AC pavement.
- 2011 Application of a rejuvenating seal on Runway 7-25. Taxiway A, B, C, D slurry seal.
- **2013** Replacement of runway and taxiway lighting system, and installation of airfield signs.

Table 1. shows the observed AC pavement distresses on the airfield based on the Airport Pavement Management System (APMS) report prepared in 2016. The extent and severity of cracking and weathering of the runway and taxiways pavement has created an increased potential for foreign object debris (FOD). As a result of the weathering, the runway grooves are deteriorating as well. The Pavements Condition Index (PCI) Ratings are included in the following Table.

Nead Flunt Page 3 of 34 \Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final
compiled wAppdx.docx

	Distress Type	Distress Severity	Pavement Condition Index (PCI) Rating	
Bunway 7.25 and	Weathering	Medium-to-High	Fair	
Runway 7-25 and Blast Pad	Longitudinal and Transverse Cracking	Low-to-Medium		
	Block Cracking	Low-to-Medium		
Taxiway A	Weathering	Low	Fair	
	Block Cracking	Medium-to-High	Poor	
Taxiway B	Weathering	Low		
	Block Cracking	Medium-to-High	Poor	
Taxiway C	Weathering	Low		
	Block Cracking	Medium-to-High		
Taxiway D	Weathering	Low	Poor	
	Block Cracking	Low-to-Medium		
Taxiway E	Weathering	Low	Fair	
Taxiway F	Longitudinal and Transverse Cracking	Low-to-Medium	Fair	
	Weathering	Low	i ali	

Table	1.	Pavement	Distress

2.4. PAVEMENT CLASSIFICATION NUMBER

The Oxnard Airport APMS report, dated October 2016, evaluated existing pavement structures at the Airport to define their structural capacities for various aircraft. According to Advisory Circular 150/5335-5C, the Aircraft Classification Number (ACN) is defined as a number that expresses the relative effect of an aircraft at a given weight on a pavement structure for a specified standard subgrade strength. Higher ACNs indicate an aircraft with more severe effects on the pavement structure. The ACN-PCN system of reporting pavement strength states that a pavement with a given Pavement Classification Number (PCN) can support an aircraft that has an ACN equal to, or less than, the PCN. The PCN expresses the relative load-carrying capacity of the pavement. The recommended PCN for Runway 7-25 is 44/F/A/W/T, based on the structural capacity of the analysis. There were no load-related distresses observed on the runway during the 2015 inspection. The recommended PCN for Taxiways A, C, and D it is 27/F/B/X/T; and for Taxiways B and E it is 4/F/B/X/T. The analysis showed that Taxiway F has PCN values above the ACN values of all the aircraft currently using and forecasted to use the Airport. However, the connector taxiways do not have the structural capacity for the operating fleet mix.

2.5. FAA ADVISORY CIRCULAR 150/5300-13A ANALYSIS

FAA Advisory Circular 150/5300-13A, *Airport Design,* contains the standards and recommendations for the geometric layout and engineering design of runways, taxiways, aprons, and other facilities at civil airports. The

Nead Hunt. NCorp.meadhunt.com/sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx updated Advisory Circular 150/5300-13A, *Change 1,* includes significant changes to several airport design standards, which are outlined in the following analysis.

The Airport's planning consultant, Coffman Associates, completed the ALP in November 2006. Within the ALP, non-standard conditions were outlined for the Airport, which pertained to the runway safety area, runway object free area, and the runway protection zone. An update to the ALP is currently underway and the aviation forecast has been approved by the FAA, which will assign the runway an RDC of D-III and the taxiways as TDG-3. Non-standard conditions outlined in the 2006 ALP were updated as a part of this report to reflect current conditions and include the following items:

• Runway Object Free Area (ROFA)

- o <u>Advisory Circular</u>: 150/5300-13A, Section 309
- <u>FAA Standard</u>: The ROFA clearing standard requires clearing the ROFA of above-ground objects protruding above the nearest point of the RSA. Objects non-essential for air navigation or aircraft ground maneuvering purposes must not be placed in the ROFA. The ROFA for an RDC of D-III is 400 feet from the runway centerline, 1,000 feet beyond the runway end, and 600 feet prior to the threshold.
- <u>Existing Condition Violations</u>: Commercial/residential properties and associated obstructions are 300 feet to 400 feet north of the runway centerline; a commercial parking lot and associated obstructions are 370 feet south of the runway centerline; a perimeter service road is 255 feet north of the runway centerline and 330 feet south of the runway centerline; a fence line is 300 feet to 400 feet north of the runway centerline; a commercial parking lot and associated obstructions are 370 feet south of the runway centerline; a perimeter service road is 255 feet north of the runway centerline; and 330 feet south of the runway centerline; a fence line is 300 feet to 400 feet north of the runway centerline; and the segmented circle is 200 feet south of the runway centerline and it is not considered fixed-by-function.

• Runway Safety Area (RSA)

- o <u>Advisory Circular</u>: 150/5300-13A, Section 307
- <u>FAA Standard</u>: The RSA must be free of objects, except for objects that need to be located in the RSA because of their function. The RSA for an RDC of D-III is 250 feet from the runway centerline, 1,000 feet beyond the departure end, and 600 feet prior to the threshold.
- <u>Existing Condition Violations</u>: The segmented circle is 200 feet south of the runway centerline and it is not considered fixed-by-function.

Runway Safety Area (RSA) Grades

- o <u>Advisory Circular</u>: 150/5300-13A, Section 313.d.
- <u>FAA Standard</u>: For Approach Category D, Table 3-3 and Figure 3-23 of the Advisory Circular specify that the minimum and maximum grades in the RSA shall be 1.5% and 3.0% respectively, away from the runway.
- Existing Condition Violations: RSA grades are less than 1.5%.

• Runway Protection Zone (RPZ)

- o <u>Advisory Circular:</u> 150/5300-13A, Section 310
- <u>FAA Standard:</u> The RPZ's function is to enhance the protection of people and property on the ground. This is best achieved through Airport-owner control of RPZs. Control is preferably exercised through the acquisition of sufficient property interest in the RPZ and includes clearing RPZ areas of incompatible objects and activities. The RPZ for an RDC of D-III has a 1,700-foot length, 500-foot inner width, 1,010-foot outer width, and starts 200 feet from the runway end.

Nead Hunt Page 5 of 34 \Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final
compiled wAppdx.docx o Existing Condition Violations: Ventura Road, K Street, 2nd Street, and commercial/residential properties are within the Runway 25 RPZ; Victoria Avenue is within the Runway 7 RPZ.

Taxiway Surface Gradients

- Advisory Circular: 150/5300-13A, Section 418 b.(6) 0
- FAA Standard: The crown of the taxiway should not be higher than the crown of the runway. 0
- Existing Condition Violations: Taxiway B centerline is higher than the Runway centerline from Taxiway \cap B Station 400+75 to 401+75. Taxiway F is higher than the Runway centerline from Runway Station 137+75 to 146+00.

This Project does not include correction or remedy of the above-mentioned conditions. Correction of these conditions are outside the scope of this Project and require additional coordination with the FAA.

As part of the design grant for this Project, Mead & Hunt analyzed the existing conditions of Runway 7-25 and taxiways from survey information provided by Encompass Consulting Group. The following non-standard conditions were determined by this analysis. A table showing the non-standard conditions is included as Appendix B.

Non-Standard Conditions to be improved by the Project

Deviation: Runway 25 Blast Pad Dimensions

- Advisory Circular: 150/5300-13A, Section 304 0
- FAA Standard: Blast Pad Dimension Requirements for an RDC of D-III (under 150,000 lbs. maximum 0 takeoff weight) is 140 feet wide x 200 feet long.
- Existing Condition: Runway 25 Blast Pad is 120 feet x 163 feet. Runway 7 does not have a paved blast pad.
- **Deviation: Runway Longitudinal Grade Changes**
 - <u>Advisory Circular</u>: 150/5300-13A, Section 313 b.(1)
 - FAA Standard: The maximum allowable grade change for aircraft approach category D is ±1.50 percent; 0 however, no grade changes are allowed in the first and last quarter, or first and last 2,500 feet, whichever is less, of the runway length.
 - Existing Condition: Grade changes occur in the first and last quarter of the runway varying from 0.10 percent to 0.40 percent.

Deviation: Runway Longitudinal Vertical Curve Length

- Advisory Circular: 150/5300-13A, Section 313 b.(3) 0
- FAA Standard: All grade changes require vertical curves for aircraft approach category D. Vertical 0 curves for longitudinal grade changes are parabolic. The length of the vertical curve is a minimum of 1,000 feet for each 1.0 percent of change.
- Existing Condition: There are grade changes up to 0.40 percent without vertical curves on the runway. 0

Meadorflunt \\Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

Page 6 of 34

• Deviation: Runway Transverse Grades

- o Advisory Circular: 150/5300-13A, Section 313 b.(5)
- <u>FAA Standard</u>: Runway transverse grades for aircraft approach category D must be between 1.0 percent and 1.5 percent.
- o Existing Condition: Runway 7-25 transverse grades range from 0.10 percent to 2.08 percent.

• Deviation: Runway 25 Blast Pad Longitudinal Grades

- o Advisory Circular: 150/5300-13A, Section 313 d.(1)
- <u>FAA Standard</u>: For the first 200 feet of the RSA beyond the runway ends, the longitudinal grade is between 0 and 3.0 percent, with any slope being downward from the ends.
- <u>Existing Condition</u>: Runway 25 Blast Pad longitudinal grades range from 0.0 percent to 0.6 percent with slopes being upward from the end.

• Deviation: Taxiway Width

- Advisory Circular: 150/5300-13A, Section 403
- **FAA Standard:** Taxiway width for a TDG-3 is 50 feet.
- **Existing Condition:** Taxiway widths range from 50 feet to 130 feet.

• Deviation: Runway to Taxiway Separation

- o Advisory Circular: 150/5300-13A, Section 405b.
- **FAA Standard:** Required separation distance for an RDC D-III is 400 feet.
- Existing Condition: 365 feet

• Deviation: Taxiway Fillet Design

- Advisory Circular: 150/5300-13A, Section 406b.(1)
- **FAA Standard:** Pavement fillets at taxiway intersections are designed for the entire selected TDG and must accommodate all aircraft of all lesser TDGs.
- **Existing Condition:** None of the taxiways meet the standard fillet design, they do not have the required tapers or radii.

• Deviation: Taxiway Acute Angle

- Advisory Circular: 150/5300-13A, Section 407b.
- **FAA Standard:** Acute angles should not be larger than 45 degrees from the runway centerline.
- **Existing Condition:** Taxiway C's angle is 50 degrees.
- Deviation: High Speed Exits
 - **Advisory Circular:** 150/5300-13A, Section 409d.(2)
 - **FAA Standard:** The radius of the exit from the runway should always be 1500 feet.

Mead&Hunt

Page 7 of 34

• **Existing Condition:** The existing radius of the exit from the runway is 1254 feet. High-speed Taxiway D does not meet design guidelines for a standard high-speed exit taxiway with a 30-degree angle of intersection.

• Deviation: Longitudinal Grade Changes (Taxiways)

- o Advisory Circular: 150/5300-13A, Section 418b.(3)
- **FAA Standard:** When longitudinal grade changes are necessary, the vertical curves are parabolic. The minimum length of the vertical curve is 100 feet for each 1.0 percent of change.
- **Existing Condition:** All taxiways have grade changes that do not meet the standards.

• Deviation: Transverse Slopes (Taxiways)

- Advisory Circular: 150/5300-13A, Section 418b.(6)
- **FAA Standard:** Cross-section slopes on paved areas for an approach category must be between 1.0 percent and 1.5 percent. The ideal configuration is a center crown with equal, constant transverse grades on either side. However, an off-center crown, different grades on either side, shed sections, and changes in transverse grades (other than from one side of the crown to the other) of no more than 0.5 percent are permissible. A 1.5-inch drop between paved and unpaved areas should be provided, and the first 10 feet off paved areas needs to be at 5.0 percent slope.
- **Existing Condition:** Taxiways have flatter and steeper transverse slopes than the standards. The 5.0 percent slope for the first 10 feet off paved areas cannot be provided without grading the whole infields and affecting NAVAIDs.

Deviation: Existing Taxiway Naming Convention

- o Advisory Circular: 150-5340-18G, Section 1.4
- **FAA Standard:** For a runway with a parallel taxiway, use alphanumeric designators at the entrance and exit taxiways located at the ends and along the runway. Apply an increasing, sequentially numbered pattern from one runway end to the other runway end, such as A1, A2, ..., A5.
- **Existing Condition:** The name for the parallel taxiway is Taxiway F, the connectors are named east to west as A, B, C, D, and E.

3. PHOTOGRAPHS

Mead & Hunt performed a visual pavement survey in February 2015, which included an inspection of Runway 7-25 and associated taxiway connector pavements. During that field investigation, existing site conditions were observed and photographed. Additional photos were also taken during the site investigation held in the summer of 2020. These photographs are included as *Appendix C*.

4. DESIGN STANDARDS

The methodologies used to evaluate existing site conditions and to develop preliminary designs for this Project are in conformance with applicable FAA advisory circulars. The latest versions of the following advisory circulars have been reviewed during the evaluation of this Project:

150/5300-13A Airport Design (Change 1)

150/5320-5D Airport Drainage Design

Page 8 of 34

\\Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

150/5320-6F	Airport Pavement Design and Evaluation
150/5335-5C	Standardized Method of Reporting Airport Pavement Strength - PCN
150/5340-1M	Standards for Airport Marking
150/5340-18G	Standards for Airport Sign Systems
150/5340-26C	Maintenance of Airport Visual Aid Facilities
150/5340-30J	Design and Installation Details for Airport Visual Aids
150/5370-2G	Operational Safety on Airports During Construction
150/5370-10H	Standard Specifications for Construction of Airports
150/5380-6C	Guidelines and Procedures for Maintenance of Airport Pavements

The latest versions of the following standards and construction specifications have been reviewed during the evaluation of this Project:

FAA-STD-019f, Change 1	Lightning and Surge Protection, Grounding, Bonding, and Shielding Requirements for Facilities and Electronic Equipment
FAA-C-1217H	Electrical Work, Premises Wiring Construction Specification
FAA-C-1391E	Installation, Termination, Splicing, and Transient/Surge Protection of Underground
	Electrical Distribution System Power Cables

While Runway 7-25 is currently classified with an RDC of B-II, existing conditions were evaluated for the new critical aircraft that has a design code of D-III. The new critical aircraft is the Gulfstream G650, which has a wingspan of 99.58 feet and a maximum takeoff weight of 99,600 lbs. Minimum design standards in accordance with Advisory Circular 150/5300-13A for the existing and proposed RDC are as follows:

Runway Design Code	B-II	D-III				
Runway Width	75 ft	100 ft*				
Runway Shoulder	10 ft	20 ft*				
Runway Safety Area (RSA) Width	150 ft	500 ft				
Runway Object Free Area (ROFA) Width	500 ft	800 ft				
Holding Position Separation	200 ft	250 ft				
Parallel Taxiway/Taxilane Separation	240 ft	400 ft				
Aircraft Parking Area Separation	250 ft	500 ft				

Table 2. Runway Design Standards

* Per Advisory Circular 150/5300-13A, Table 3-5 Runway Design Standard Matrix, note 12: "For airplanes with maximum certified takeoff weight of 150,000 lbs. or less, the standard runway width is 100 feet, the shoulder width is 20 feet, and the runway Blast Pad width is 140 feet."

The design standards in accordance with Advisory Circular (AC) 150/5300-13A for the proposed TDG-3 are as follows:

Taxiway Design Group	3
Taxiway Width	50 ft
Shoulder Width	20 ft
Taxiway Safety Area (TSA) Width	118 ft
Taxiway Object Free Area (TOFA) Width	186 ft
Taxiway Centerline to Fixed or Movable Object	93 ft
Transverse Grade (Min. – Max.)	1.0% - 1.5%
Longitudinal Grade (Min. – Max.)	0.0% - 1.5%

Table 3. Taxiway Design Standards

5. TOPOGRAPHIC SURVEYS

Topographic surveys were performed for the Project in October 2018, December 2019, and October 2020 by Encompass Consultant Group, as a subconsultant to Mead & Hunt. The surveys provided coordinates and elevations of the existing ground surface, as well as features within the Project limits, including drainage and electrical structures. Using this data, existing ground contours were generated and a digital terrain model (DTM) was developed to evaluate FAA AC 150/5300-13A design requirements criteria, surface gradient criteria, analyze site drainage, and develop proposed runway and taxiway profiles. Some of the storm drain invert elevations and pipe sizes could not be verified due to sedimentation.

6. GEOTECHNICAL INVESTIGATION

A geotechnical analysis was performed by Earth Systems Pacific as a subconsultant to Mead & Hunt. The final geotechnical engineering reports and Addendum No. 1 to the reports, which includes the sulfate testing, were submitted on July 10, 2020, and are attached as *Appendix D, Part 1 and Part 2* respectively. The geotechnical investigations included 70 (up to 10-foot depth) pavement borings, with 30 of the borings located on the runway, two on each of the taxiway connectors for a total of 10 borings, and 30 on Taxiway F. Based on the geotechnical investigation, the existing asphalt concrete thickness on the runway varied from 3 inches to 6.5 inches, and the existing aggregate base section varied from 8 inches to 17 inches. For design and analysis purposes, an average existing pavement section of 4 inches of AC over 10 inches of aggregate base was assumed. The existing pavement section on the taxiway connectors consists of a minimum of 4 inches of asphalt pavement on 3.5 to 12 inches of aggregate base. The parallel taxiway pavement sections consist of a minimum of 2 inches of asphalt pavement on 2.5 to 10 inches of aggregate base. Most of the asphalt thicknesses measured varied from 4 to 5.5 inches. Based on field samples, it was determined that the existing aggregate base does not comply with gradation specifications for FAA P-209 material. The material was classified as miscellaneous aggregate base. For this reason, the quality of the existing layer of aggregate base will not be considered or modeled as P-209 during the design, but rather with the values determined by California Bearing Ratio (CBR) tests.

Below the runway and taxiway connector pavement sections, 4- to 8-inch layers of loose to medium dense, poorly graded sand fill was found, generally on the west side of the project area, in borings 1 through 8, 31 through 34, and 36. Below the poorly graded sand and below the pavement sections in all other runway and taxiway connector borings, the underlying soil consisted of sandy lean clay, silty sand, and lean clay at depths

Mead & Hunt

Page 10 of 34

ranging from 2 to 5 feet below the existing pavement surface. Below the parallel taxiway pavement sections, layers of well graded sand with varying percentages of silt and gravel, and varying in thickness from 6 to 14 inches, were found in 20 of the 30 borings drilled on the taxiway. Below the well graded sand and below the pavement sections in all other borings, the underlaying soil was sandy lean clay fill, which extended to depths ranging from 4 to 7 feet below the existing pavement surfaces.

The soil found on site is considered cohesive, with a compaction standard of 95 percent of maximum dry density. Alluvium was found below the fill in all borings, to the maximum depth explored (10 feet). The alluvium consisted of very soft to medium stiff sandy lean clay, silt, and lean clay. The soils were described during drilling as being slightly moist to very moist.

Subsurface water was not encountered in any of the borings at the maximum depth explored (10 feet below the existing pavement surface). However, caliche deposits, a residual mineral in the soil indicating the past presence of subsurface water, were found at various depths in 46 of the 70 borings drilled for this Project. Existing soil moisture content was found to be up to 10.8 percent above optimum. As a result, the geotechnical reports recommend the construction of edge drains to help maintain consistent soil moisture. This observation was consistent with previous subsurface investigations.

The geotechnical analysis provided a recommended CBR value for the runway native subgrade soils to be used for the pavement design. The report recommends a CBR of 1, if no moisture conditioning or reworking of the subgrade is included as part of the Project. If moisture conditioning and compaction of the existing soils to 95 percent of maximum dry density is included, then the recommended CBR values of the subgrade (without chemical stabilization measures) will be 5 for the area between Taxiway Connectors B to D, and 8 for the remaining areas between Taxiway Connectors A and B and between D to E. The geotechnical report proposes design options for the pavement section, see Section 7.2 for details.

Addendum No. 1 (*Appendix D, Part 2*) of the report includes results and discussion on the soluble sulfate content tests. The design concern for lime-treated soil is that lime used in the stabilization process can react with the soluble sulfates and induce heave in the subgrade, which will cause heaving on the pavement. The tests yielded a wide range of results from a low of 169 ppm to 23,500 ppm of soluble sulfates. The soil sample with the greatest soluble sulfate content was treated with 5 percent lime, by dry weight, with different mellowing time periods. After treatment and mellowing, the sample with the highest level of soluble sulfates was sent to a subconsultant's laboratory, where tests revealed a considerable reduction from the initially tested value. The result of this test was a residual soluble sulfate level of 677 ppm. This is below 3,000 ppm soluble sulfate rich soil. Addendum No. 1 to the geotechnical report proposed the following procedure for mitigating the heave in the subgrade for stabilization:

- Lime-treat the subgrade to 5 percent by dry weight.
- Lime treatment should be performed in two stages (3 percent initial and 2 percent secondary).
- A minimum mellowing period of 7 days should be used for the initial stage, prior to the secondary lime treatment operation. Soil moisture content should be maintained at 4 to 5 percent above optimum, as a minimum, during the initial mellowing period. Soil should be remixed a minimum of 3 times.
- After the initial treatment and mellowing period, the second treatment shall commence. The second treatment requires a 48-hour mellowing period. Soil moisture content should be maintained at 4 to 5 percent above optimum, as a minimum, during the initial mellowing period. The soil should be remixed at least 1 additional time following the final lime treatment operation prior to final compaction.
- Soluble sulfates should then be retested to verify it is within acceptable limits

If utilized, the lime treated soil layer should be 12 to 16 inches thick. To reduce off-haul and disposal of asphalt concrete and miscellaneous aggregate base, the reports suggest pulverizing these in place and mixing with the subgrade.

Swelling soils tests were also performed. FAA AC 150/5320-6F indicates that soils with a swell greater than 3 percent, when tested for CBR, require treatment to reduce the potential for damage to pavements. Only 4 borings tested with a swell in excess of 3 percent. The Airport does not exhibit pervasive evidence of damage due to swelling soils, as the swelling material was mainly identified at depths of 4 feet or greater. Treatment of existing soils with the prescribed lime percentage will neutralize the swell potential of existing soils. To estimate shrinkage of the subgrade, in-situ soil density data was analyzed. The average shrinkage percentage ranged from 7.3 at 95 percent relative compaction to 13 percent at 100 percent relative compaction. In some areas, if the material is recompacted to a value less than its existing compaction, it will swell, and, if it is recompacted to a higher value than that in place, then it will shrink.

7. PAVEMENT DESIGN EVALUATION

7.1. AIRCRAFT FLEET MIX

The aircraft fleet mix was developed from the FAA-approved 2018 Draft Forecast for Oxnard Airport and close coordination with the Airport on current and expected operations and aircraft types utilizing Runway 7-25. The 2017 Traffic Flow Management System Counts (TFMSC) from the FAA was included in the forecast and used to determine operations of the heavier aircraft utilizing the runway. The operations and aircraft types from the forecast were confirmed by the FAA 2018 TFMSC. The Airport anticipates the Gulfstream G650 as being the critical aircraft utilizing the runway by 2020, with 500 operations per year. The annual growth considered for the G650 was calculated according to the data provided from the 2018 forecast. The Embraer E175, with a design code of C-III, wingspan of 93.92 feet, and maximum takeoff weight of 85,517 pounds, was added to the aircraft fleet mix to account for the possibility of future commercial service at the Airport. Three flights per day, with a 3.0 percent annual growth, was forecast for this aircraft.

The itinerant operations given by the forecast were distributed proportionally to the traffic counts among the aircraft in the fleet mix, excluding the Embraer E175. The local operations were distributed proportionally to the present and future aircraft based at the Airport. The aircraft fleet mix used in the pavement design is included as *Appendix E*. The number of total operations over a 20-year period (number of total operations during design life) was used to determine the percent of annual growth in traffic for each aircraft.

7.2. PAVEMENT DESIGN OPTIONS

Pavement design options were developed and analyzed for the runway, including rehabilitation and reconstruction with a lime-treated subgrade and a subgrade that was not lime-treated. For the taxiways, the reconstruction options were the only choice considered since their geometry is changing. The analyses were performed with the FAA pavement design software, FAARFIELD, and in accordance with FAA procedures outlined in Advisory Circular 150/5320-6F. The pavement design options are discussed in the following sections. The detailed FAARFIELD pavement design reports are included in *Appendix F*.

The Asphalt Binder was determined utilizing the LTTPBind Online calculator. With 98% confidence on the low pavement temperature is 5 degrees Celsius, and the low binder can be set as -10. With 98% confidence in 7-day pavement high temperature at 56 degrees Celsius, the upper binder can be set at 58. Per FAA design criteria, the upper limit is bumped by two levels to accommodate for aircraft over 100,000 pounds. This bump

does not create a need for polymer modification which keeps the oil cost relatively low, and 70-10 binder is a common binder is southern California.

7.2.1. Runway Rehabilitation Option

The rehabilitation option consists of constructing a new P-209 crushed aggregate base layer and a P-401 asphalt surface course. The existing asphalt concrete will be pulverized, blended, and compacted with the underlying existing aggregate base. The recommended subgrade, a CBR value of 1, was used for this option since moisture conditioning and compaction of the subgrade will not be part of the Project. The geotechnical investigation included CBR tests on the existing aggregate base material. Different types of existing aggregate base material were encountered along the runway, which are shown below with varying CBR values.

- Brown Clayey Sand with Gravel CBR = 12 and 27
- Brown Silty Gravel with Sand CBR = 50
- Brown Silty Sand with Gravel CBR = 50

The pavement designs for the rehabilitation option were evaluated using the following parameters:

- Subgrade CBR value of 1
- 14-inch recycled aggregate base section consisting of existing aggregate base blended with pulverized asphalt concrete (modeled as user-defined layer for three different elastic modulus values)
- P-209 Crushed Aggregate Base Course
- P-401 Asphalt Surface Course
- 10-year design life (typical for rehabilitation).

Based on the three CBR values shown above for the existing aggregate base material, three pavement design alternatives were evaluated for the runway. The CBR values were converted into elastic moduli using the equation provided in Chapter 2.5.3 by FAA Advisory Circular 150/5320-6F as follows:

• E [psi]= 1,500 x CBR (Equation 1)

In accordance with paragraph 2.5.6.3 of the above-mentioned advisory circular, the maximum elastic modulus value that should be specified for a gravelly material is 50,000 psi.

The following table summarizes the pavement thicknesses obtained for the pavement rehabilitation option with different CBR values for the existing aggregate base material.

	CBR of Existing Aggregate Base		
	12	27	50
Asphalt Surface Course P-401	4 inches	4 inches	4 inches
Crushed Aggregate Base Course P-209	19 inches	14 inches	12.5 inches
Existing Recycled Aggregate Base	14 inches	14 inches	14 inches

7.2.2. Runway Reconstruction Options

For the reconstruction option, the higher CBR values of 5 and 8 were used since the subgrade will be moisture conditioned and compacted to 95 percent of maximum dry density. However, based on the high moisture content

Mead Hunt Page 13 of 34 \Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx results of the in-place subgrade, obtaining the required compaction and moisture limits may not be feasible or economical. For the purpose of this analysis, a lime-treated subgrade was considered to achieve moisture conditioning and stabilization. Two design alternatives were evaluated for the pavement reconstruction option including a lime-treated subgrade and a subgrade that was not lime-treated.

Runway Reconstruction without Lime-Treated Subgrade:

Reconstruction of the pavement structure without a lime-treated subgrade was evaluated with the following parameters:

- o Subgrade CBR values of 5 and 8 (two pavement designs for two CBR values)
- o P-209 Crushed Aggregate Base Course
- o P-401 Asphalt Surface Course
- o 20-year design life

When the pavement design is evaluated with a CBR of 5, the pavement section consists of 4 inches of P-401 and 20.5 inches of P-209. When evaluated with a CBR of 8, the pavement section consists of 4 inches of P-401 over 16.5 inches of P-209. The following figures show the two pavement sections designed with different subgrade CBR values.

OXR-PAV-DESIGN	N RECON-NOLIN	ME Des. Life = 20	OXR-PAV-DESIGN	RECON-NOLIME	Des. Life = 20
Layer	Thickness	Modulus or R	Layer	Thickness	Modulus or R
Material	(in)	(psi)	Material	(in)	(psi)
P-401/P-403 HMA Surface	4.00	200,000	P-401/ P-403 HMA Surface	4.00	200,000
P-209 Cr Ag	20.29	51,754	<u>P-209 Cr Ag</u>	16.07	48,362
Subgrade Subgrade	CBR = 5.0	7,500	Subgrade	CBR = 8.0	12,000
	Str Life (SG) = 20.0 y	ns; t = 24.29 in	Sub CDF = 1.00;	Str Life (SG) = 20.0 yrs;	t-20.07 in

Runway Reconstruction Subgrade CBR = 5

• Runway Reconstruction with Lime-Treated Subgrade:

The reconstruction option with a lime-treated subgrade was evaluated in accordance with paragraph 3.13.5.5 of FAA Advisory Circular 150/5320-6F. Based on the finding of the geotechnical analysis, a CBR value of 52 was determined for the lime-treated subgrade layer (E = 78,000 psi). The value of 52 corresponds to a lime-treated section consisting of 5 percent lime. A subgrade CBR value of 1 was assigned for the undisturbed subgrade soils. The geotechnical report recommends lime-treated subgrade thicknesses of 12 inches and 16 inches. Both thicknesses were evaluated for this alternative.

Reconstruction of the pavement structure with a lime-treated subgrade was evaluated with the following parameters:

- o Subgrade CBR value of 1
- Lime-Treated Subgrade (modeled as User Defined Layer with elastic modulus of 78,000 psi for both 12-inch and 16-inch thicknesses)
- o P-209 Crushed Aggregate Base Course

Page 14 of 34

- o P-401 Asphalt Surface Course
- o 20-year design life

When the pavement design is evaluated with a 12-inch thick lime-treated subgrade, the pavement section consists of 4 inches of P-401 and 12 inches of P-209. When evaluated with a 16-inch thick lime-treated subgrade, the pavement section consists of 4 inches of P-401 and 8.5 inches of P-209. The following figures show the two pavement sections designed with different lime-treated subgrade depths.

OXR-PAV-DESIGN Mod-fleet Des. Life = 20 Layer Thickness Modulus or R Material (in) (psi)	OXR-PAV-DESIGN Mod-fleet Des.Life = 20 Layer Thickness Modulus or R Material (in) (psi)
P-401/P-403 HMA Surface 4.00 200,000	P-401/P-403 HMA Surface 4.00 200,000
P-209 Cr Ag 11.55 138,987	P-209 Cr Ag 8.23 130,525
User Defined 12.00 78,000	User Defined 16.00 78,000
Non-Standard Structure Subgrade CBR = 1.0 1.500 Sub CDF = 1.00; Str Life (SG) = 20.0 yrs; t = 27.55 in	Non-Standard Structure Subgrade CBR = 1.0 1.500 Sub CDF = 1.00; Str Life (SG) = 20.0 yrs; t = 28.23 in
12-inch Lime-Treated Section	16-inch Lime-Treated Section

7.2.3. Runway Comparative Analysis

In summary, two runway pavement design options were analyzed along with multiple variables that affected the proposed pavement sections. The following table provides a summary of the pavement thicknesses and layers obtained from the FAARFIELD evaluations.

	REHABILITATION		RECONSTRUCTION				
	RAB CBR 12	RAB CBR 27	RAB CBR 50	Untreated CBR 5	Subgrade CBR 8		reated Jrade
Asphalt Surface Course, P-401	4 inches	4 inches	4 inches	4 inches	4 inches	4 inches	4 inches
Crushed Aggregate	19	14	12.5	20.5	16.5	12.0	8.5
Base Course, P-209	inches	inches	inches	inches	inches	inches	inches
Recycled Aggregate	14	14	14				
Base (RAB)	inches	inches	inches				
Lime-Treated Subgrade						12 inches	16 inches
Subgrade CBR	1*	1*	1*	5	8	1*	1*

Table 5. Runway Rehabilitation Versus Reconstruction Pavement Section

Notes:

* In-situ subgrade CBR.

Mead & Hunt

Based on the results of this analysis, the runway rehabilitation option will require at least 16.5 inches of new pavement section materials. Furthermore, the rehabilitation will not resolve the inconsistency in subgrade moisture content, which may present unknown constructability and stability issues.

For the runway reconstruction option, pavement sections with and without a lime-treated subgrade were analyzed. Based on the findings of the geotechnical investigation, the existing condition of the subgrade and in-situ moisture content varied considerably depending on the location. Without stabilization, the subgrade will have to be dried and recompacted to meet design requirements for moisture content and compaction. The time required to dry out the subgrade will be extensive and is not practical. In this case, the use of a stabilization process may ultimately be required, requiring additional construction time over conventional construction, except when accounting for soil-drying delay, and increased construction costs.

For the reasons stated above, the use of a lime-stabilization process for the subgrade is recommended (Runway Reconstruction with Lime-Treated Subgrade Option). The lime-treated subgrade will provide a uniform subgrade on which the pavement section can be constructed. The uniformity of the subgrade will promote a homogeneous deterioration of the pavement over time. The 16-inch thick lime-treated section is recommended since it will not only result in the least amount of new crushed aggregate base course and reduce the amount of required earthwork, but will also permit part of the existing aggregate base material to be mixed into the lime-treated subgrade section, which will increase the subgrade strength. The ability to perform a 16-inch treatment in a single pass has been confirmed with local contractors. Subgrade stabilization with excavation below subgrade may be required in certain areas prior to constructing pavement section, which will consist of in-place drying techniques and/or excavating below subgrade and replacing with multi-axial geogrid, asphalt millings, and existing aggregate base. This shall be performed only where directed by the RPR. As noted in the geotechnical report, lime-treated subgrade may be replaced with cement-treated subgrade in areas where the native subgrade materials contain more sand-type properties.

For subsequent sections of this report, only the runway rehabilitation option with a CBR value of 12 for the recycled aggregate base and the runway reconstruction option with a 16-inch lime-treated section is advanced for further analysis.

7.2.4. Taxiway Reconstruction Options

Two pavement reconstruction design options were developed and analyzed for the taxiways, which included lime-treated subgrade and untreated subgrade. The analysis was performed with the FAA pavement design software, FAARFIELD, and in accordance with FAA procedures outlined in AC 150/5320-6F.

An analysis was also performed for an overlay on the existing Taxiway C and the east end of Taxiway F, but this overlay was determined to be infeasible due to the low CBR values of the subgrade. The new asphalt thickness will need to be 15 inches, assuming 3 inches of existing asphalt is protected in place over 7 inches of aggregate base using a CBR value of 2.0.

• Taxiway Reconstruction without Lime-Treated Subgrade:

The first design alternative consists of reconstruction over untreated subgrade and use of a subbase, then aggregate base and asphalt concrete. Per AC 150/5320-6F, a subbase is required as part of the flexible pavement structure on subgrades with a CBR value less than 20. Based on the findings of the geotechnical investigation, the existing condition of the subgrade and in-situ moisture content vary considerably, depending on the location. Without stabilization, the subgrade will have to be dried and recompacted to meet design requirements for moisture content and compaction. The time required to dry out the subgrade, as mentioned previously, will be extensive and is not practical in clayey soils.

Reconstruction of the taxiway pavement structure without a lime-treated subgrade was evaluated with the following parameters:

Page 16 of 34

\\Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

- Subgrade CBR value of 7.3
- P-209 Crushed Aggregate Base Course
- o P-154 Subbase Course
- o P-401 Asphalt Surface Course
- o 20-year design life

• Taxiway Reconstruction Lime-Treated Subgrade:

The second taxiway design alternative consists of using a lime-treated subgrade to provide a uniform subgrade on which the pavement section can be constructed. The uniformity of the subgrade will promote a homogeneous pavement response to loading and aging. A 16-inch thick lime-treated section is recommended. This will reduce the amount of required earthwork and permit part of the existing aggregate base material to be mixed into the lime-treated subgrade section, which will increase the subgrade strength. The ability to perform a 16-inch treatment in a single pass has been confirmed with local contractors. Due to the localized sulfate-rich soils and high soil moisture content, there will be an expected minimum of nine days during construction for mellowing time, plus additional testing of the mixed material to make sure that the expansive qualities and sulfate quantities have dropped to acceptable levels. Based on past evidence of subsurface water, the use of a stabilization process is the recommended alternative, with edge drains to help maintain long-term soil moisture.

Reconstruction of the taxiway pavement structure with a lime-treated subgrade was evaluated with the following parameters:

- o Subgrade CBR value of 2
- Lime-Treated Subgrade (modeled as User Defined Layer with elastic modulus of 78,000 psi)
- o P-209 Crushed Aggregate Base Course
- P-401 Asphalt Surface Course
- o 20-year design life

7.2.5. Taxiway Comparative Analysis

Based on laboratory CBR test results, an approximate average CBR value of 8 for compacted native soils can be used in the design of reconstructed pavements, assuming the soils are compacted to a minimum of 95 percent. To be conservative and per FAA guidelines, a CBR for pavement design should be one standard deviation below the average. Thus, a CBR of 7.3 was used for the design alternative where the subgrade must be recompacted. The geotechnical report recommends a CBR of not more than 2 for in-situ material (not moisture conditioned or compacted to 95 percent). Based on historical performance showing no pavement rutting, significant edge cracking, or random surface unevenness, a CBR value of 2 was used as a conservative assumption for the existing untreated subgrade.

	Untreated Subgrade	Lime-Treated Subgrade
Asphalt Surface Course, P-401	4 inches	4 inches
Crushed Aggregate Base Course, P-209	7 inches	9 inches
Subbase, P-154	13 inches	N/A
Lime-Treated Subgrade	N/A	16 inches ¹
Re-Worked Subgrade	14 inches ²	N/A
Subgrade CBR	7.3	2

Table 6. Taxiways Design Alternatives Pavement Section

Notes:

Assumed CBR value of 30 to consider the slower traffic and more frequent hold of aircraft on the taxiway compared with the runway.

² Depth of compaction from top of subgrade. It is assumed that below this depth the existing subgrade has at least 85 percent maximum dry density.

7.3. LIFE CYCLE COST ANALYSIS

Life Cycle Cost Analysis (LCCA) is a procedure to economically compare competing design alternatives by considering all significant costs and benefits over the economic life of each alternative. LCCA equates all present and future costs (and benefits) over the life of a pavement by accounting for the effects of the time value of money. Because life cycle costing compares alternatives, it is necessary that each alternative is equivalently designed and provides similar performance results.

There are various ways to express the time value of money. However, present worth or present value economic analyses are considered by the FAA to be the best methods for evaluating airport pavement design or rehabilitation alternatives.

The fundamental factors that should be considered in LCCA are:

- Agency costs (initial, rehabilitation, operation, and maintenance costs)
- User costs (delay-of-use, and others)
- Discount rate
- Rehabilitation election and service life between rehabilitations
- Comparable sections
- Analysis period

Other factors, such as construction duration, rideability over time, safety, and environmental friendliness can also enter pavement type selection. However, it is difficult to relate these factors to cost or performance and put them into an economic analysis. For this LCCA, these factors have been omitted.

For this Project, a 20-year pavement maintenance cycle was evaluated for each runway pavement design option and for the taxiway lime-treated pavement design option. The cycle includes present values for the initial and maintenance costs. Note that the Project costs represent relative costs based on the existing areas to be rehabilitated, and do not include all the Project elements (such as shoulders, electrical, and others). The total present value costs for each option are listed below:

Nead Hunt Page 18 of 34 \Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

Option	Total Present Value
Runway Rehabilitation (not selected)	\$10,625,083.84
Runway Reconstruction (Base Bid)	\$10,162,187.67
Taxiway Connectors (Bid Alternate 1)	\$1,519,474.27
Parallel Taxiway (Bid Alternate 2)	\$7,625,341.29

Table 7. Runway LCCA Total Present Values

The complete LCCA, with a breakdown of initial costs and maintenance schedules, is included as Appendix G.

8. CONSIDERATIONS FOR AIRPORT OPERATIONAL SAFETY

8.1. CONSTRUCTION SAFETY AND PHASING ANALYSIS

An analysis between the reconstruction and rehabilitation alternatives of the runway was performed, which included an evaluation of the estimated construction duration. The analysis assumed a full runway closure. For the runway rehabilitation alternative, the estimated construction duration is approximately 3.5 to 4.5 months. For the reconstruction alternative, a construction duration of 3 to 4 months was estimated. Although the reconstruction alternative has more elements of work, the rehabilitation alternative requires almost double the quantity of aggregate base, which is the critical path element during construction. In addition, construction duration for the rehabilitation has more potential for delays, as the moisture condition and the stability of the existing aggregate base will be unknown until uncovered.

The analysis illustrates that the reconstruction alternative not only will provide the benefit listed in the previous paragraphs throughout the report but will also have the shortest duration for construction. The construction duration for each option is summarized below.

Option	Estimated Duration
Runway Reconstruction	3 to 4 Months (Full Closure) 14 Working Nights (Nightly Closures)
Runway Rehabilitation	3.5 to 4.5 Months (Full Closure) 14 Working Nights (Nightly Closures)

Table 8. Runway Construction Duration Options

A phasing analysis has been performed for the entire Project for the reconstruction alternative. The analysis provides the basis for the Construction Safety and Phasing Plan (CSPP). A sample construction schedule for the Project is included as *Appendix H*.

8.2. CONSTRUCTION SAFETY AND PHASING PLAN

Mead & Hunt analyzed the construction Project phasing and looked at options for minimizing disruption to Airport operations. As part of this Project, there are three community outreach workshops to inform the public about the Project and to receive input on construction phasing. The first workshop occurred on August 25, 2020; during the online workshop a survey was done where attendees were asked what was more important to them during construction, limited runway availability or shorter construction durations. There were 42 survey participants; 52% selected Limited Runway Availability and 48% selected the Shorter Construction Duration option. The

Nead Hunt (Corp.meadhunt.com/sharedfolders/entp/3138400/181115.02/TECH/Design/Reports/Engineering/100% Final/OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx second workshop occurred on November 17, 2020. Attendees were also given the opportunity to vote on their preference for the construction phasing alternatives. There were 25 survey participants, 64% selected the Full Runway Closure and 36% selected the Partial Runway Closure Alternative. As a result of the survey workshops and considering the safety, schedule, budget, and product quality, the County decided to move forward with the Full Runway Closure Alternative.

A CSPP was developed in accordance with Advisory Circular 150/5370-2G. The CSPP details the proposed phasing and sequence of work, work area limits and pavement closures, haul routes and staging areas, and impacts to procedures and FAA NAVAIDs. The CSPP was uploaded to OEAAA System for FAA review on February 19, 2021. The CSPP is included in the Project Specifications.

9. SURFACE GRADIENT AND DRAINAGE DESIGN

9.1. RUNWAY GENERAL SURFACE GRADIENT CONSIDERATIONS

The scope of this Project does not include grading the RSA to meet the surface gradient requirements of Advisory Circular 150/5300-13A. However, this Project will include improving both the longitudinal and transverse surface gradient of the runway pavement and matching existing grades with RSA-compliant slopes where possible. As part of the preliminary design, the runway surface was analyzed to determine how the existing conditions and electric facilities might impact the design of the new pavement surface. The existing runway surface is not in conformance with applicable gradient requirements, with deviations noted along the entire runway, which are discussed in the following paragraphs. Existing conditions that impact the design are the following:

- In MALSF bars
- Runway edge lights
- Runway 25 Localizer
- Transverse slopes on the runway cross section less than 1.0 percent in various locations
- Shallow slopes in the existing RSA
- Approach and departure surfaces

A design surface was developed for Runway 7-25. The surface aims at achieving 13A compliance, at least within the pavement limits. When matching into the existing RSA, Runway 7-25's centerline profile should be raised enough to allow for a maximum total transverse elevation drop of about 20 inches (1.675 feet) to allow matching existing (and shallow) grades without creating swales in the RSA. As mentioned above, the Project does not include grading the RSA to 13A-compliant grades off paved areas. A future project should be programmed to adjust the RSA slopes as necessary.

The analysis for the design of the new pavement surface was conducted considering the following assumptions:

- Runway Design Category D-III (Critical Aircraft Gulfstream G650)
- Shoulder width of 20 feet
- RSA-compliant grading, including cross section slopes on paved areas between 1.0 and 1.5 percent slope (preferably not less than 1.25 percent for asphalt concrete pavements to allow for proper drainage), 1.5-inch drop between paved and unpaved areas, and first 10 feet off paved areas at 5.0 percent slope

Mead Hunt Page 20 of 34 \Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

9.1.1. First Quarter of Runway 7

The first quarter of Runway 7 starts at Taxiway E and ends before Taxiway D. The existing pavement transverse grades on both sides of the runway crown and the entire length of the runway section within the first quarter of Runway 7 are out of tolerance with the specified criteria per the Advisory Circular. Within this section, transverse grades are both too steep and too shallow. The grades are as steep as 2.08 percent and as shallow as 0.51 percent. Existing pavement longitudinal grades within the first quarter section of Runway 7 have grades below the 0.80 percent maximum but have non-standard grade changes. Within the first quarter section of the runway, grade changes are not allowed. There are existing grade changes up to 0.15 percent.

The proposed profile for the first quarter of Runway 7 consists of one tangent at a 0.09 percent slope, which complies with Advisory Circular 150/5300-13A (refer to *Appendix I, Exhibits I.4 and I.5*).

It was observed that the runway centerline profile in this section needs to be raised more than 6 inches to a maximum of 10 inches to meet RSA grading compliance for unpaved areas (first 10 feet off pavement at -5.0%). A deviation of more than 6 inches from the existing runway grades may require an adjustment to the localizer and approach and departure surfaces. Runway 7 threshold would need to be raised between 5 to 8 inches to be able to meet RSA grading on paved areas in the first quarter of Runway 7.

9.1.2. Middle Section of Runway 7-25

The middle section of Runway 7-25 starts before Taxiway D and ends after Taxiway B. Existing pavement transverse grades within the middle section of Runway 7-25 are outside the specified criteria. The areas outside the specified criteria are on both sides of the runway crown and span the entire length of the section. Within this section, transverse grades are typically too shallow. The transverse grades are as shallow as 0.10 percent. The longitudinal grades in this area are all below the maximum requirement of 1.50 percent. The middle section of Runway 7-25 has non-standard grade changes. All grade changes on a runway require vertical curves. The non-standard grade changes, without vertical curves, are up to 0.40 percent.

The proposed runway centerline profile in the middle section of Runway 7-25 (refer *Appendix I, Exhibits I.5 to I.8*) includes the only three grade changes of the profile. Longitudinal slopes as well as the distances of point of vertical intersection comply with Advisory Circular 150/5300-13A. Also, in this section, it was observed that the runway centerline profile needs to be raised more than 6 inches to meet full RSA grading compliance. In the middle section of Runway 7-25 joining the existing surface with RSA grading requirements can be done by raising the runway centerline profile by a maximum of 10 inches. Compliant slopes can be achieved in this runway section with a transverse slope of 1.3 percent.

9.1.3. First Quarter of Runway 25

The first quarter of Runway 25 starts at Taxiway A and ends before Taxiway B. Pavement transverse grades within the first quarter of Runway 25, on both sides of the crown, have slopes that are outside the specified criteria. The non-standard slopes run the entire length of this section, with slopes as steep as 1.91 percent and slopes as shallow as 0.20 percent. Pavement longitudinal grades within the first quarter of Runway 25 also have grade changes outside of the specified criteria. Longitudinal slopes are all below the 0.80 percent maximum. There are existing grade changes from 0.10 to 0.40 percent.

One of the goals of the design is to minimize disruption to the existing MALSF bars. To do this, three alternative centerline profiles were developed during preliminary design and an additional option was developed during final design for the first quarter of Runway 25 so that minimal to no adjustments will be required for the MALSF bars. The four options are as follows:

Option 1. This option consists of reconstructing/rehabilitating the runway pavement between MALSF bars by maintaining the existing grades and MALSF foundation bar elements. (See *Appendix I, Exhibit I.1*). With this Mead Hunt Page 21 of 34

option no adjustments to the concrete bars or to the approach surface will be required. However, this option results in grade changes in the first quarter of the runway centerline profile (AC 150/5300-13A Paragraph 313 b. (2)) and a positive longitudinal slope on Runway 25 blast pad (AC 150/5300-13A Figure 3-22).

Option 2. This option consists of reconstructing/rehabilitating the runway pavement with a -0.23% longitudinal slope in the first quarter of Runway 25 keeping the MALSF threshold bar (bar #1) at the existing elevation. (See *Appendix I, Exhibit 1.2*). Option 2 also includes a 0.0% longitudinal slope on Runway 25 blast pad. This option will require the reconstruction of MALSF foundation bars #2 (-1.1 inches) and #3 (+0.4 inches) on Runway 25 blast pad. For Option 2, there is no longitudinal gradient change in the first quarter of the runway and no adjustment to the approach surface is anticipated.

Option 3. This option consists of reconstructing the runway pavement so that no adjustment is needed for MALSF bar #2. (See *Appendix I, Exhibit I.3*) The centerline profile proposed for Option 3 features the same longitudinal slopes as the one in Option 2, but the overall profile was raised by approximately 1 inch to avoid the reconstruction of MALSF bar #2. MALSF bars #1 and #3 will need to be reconstructed to raise them by +1.1 inches and +1.4 inches, respectively. Adjustment for MALSF bar #4 will be approximately -3 inches. Also, for Option 3 there is no longitudinal gradient change in the first runway quarter and no adjustment to the approach surface is anticipated.

The three MALSF options were discussed with the FAA during preliminary design; Option 3 was identified as the preferred alternative and a preliminary surface was developed considering this profile for the first quarter of Runway 25 (refer to *Appendix I, Exhibits I.8 and I.9*).

During final design and upon acquiring additional topographical information it was noticed that if Option 3, as explained above was used, the blast pad edge of pavement was going to be about one foot below existing ground when constructed according to standard. This would create a swale at the edge of the pavement. It was proposed to FAA and the Ventura County to raise the first quarter of Runway 25 to a maximum of 6 inches to resolve the grading issues (Option 4).

Option 4. This option will require the reconstruction of MALSF foundation bars #1 (+4.3 inches), #2 (+4 inches), and #3 (+6.4 inches) on Runway 25, and #4 (+2 inches) on Runway 25 blast pad. For Option 4, there is no longitudinal gradient change in the first quarter of the runway and no adjustment to the approach surface is anticipated.

The first quarter of Runway 25 (between stations 144+50 and 159+53) and Runway 25 Blast Pad, were analyzed considering this option of the MALSF alternatives as the centerline profile. Option 4 of the MALSF alternatives allows the pavement to be constructed at the minimum 1.0 percent transverse slope. Runway 25 Blast Pad is currently at a non-standard longitudinal grade. MALSF Option 4 profile shows the blast pad at a 0.0 percent slope, which is compliant with FAA Advisory Circular 150/5300-13A Change 1 requirements.

In summary, the preferred runway profile Option 4 will create 13A complaint slopes everywhere within Runway 7-25 pavement limits. With the proposed profile, RSA grades cannot be met everywhere outside of the runway pavement as the existing infield is too flat; however positive drainage will exist for the entirety of the runway. Per FAA's recommendation during final design, the MALSF threshold bar got moved 8 feet from the threshold to avoid it being crowded with the runway edge lights.

During preliminary coordination with the FAA and the Airport, there was discussion about the option of raising the runway surface between one and two feet to minimize the grading effort, and making adjustments to existing FAA-owned equipment located in the RSA, in the case of a future project to correct the existing RSA grades at the Airport. It was decided not to follow this option, as the timeline of the Project will not allow for the coordination of establishing a new approach. Therefore, without raising the runway more or grading the whole infields and

Mead funt Page 22 of 34 \\Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

affecting some of the NAVAIDs, it is not possible maintain 5% for the first ten feet of unpaved surface adjacent to the paved surface.

9.2. TAXIWAY GENERAL SURFACE GRADIENT CONSIDERATIONS

A pavement surface model was developed for the taxiway connectors and parallel taxiway. The surface aims at achieving 13A compliance, at least within the pavement limits. As mentioned above, the Project does not include grading the TSA and TOFA to 13A-compliant grades off paved areas. A future project will be scheduled to correct the TSA and TOFA slopes, if necessary.

The analysis for the design of the new pavement surface was conducted considering the following assumptions:

- Runway Design Category D-III (Critical Aircraft Gulfstream G650)
- Taxiway Design Group 3
- Shoulder width of 20 feet
- Compliant grading within pavement limits, including cross section slopes on paved areas between 1.0 and 1.5 percent slope, a 1.5-inch drop between paved and unpaved areas, and grading of the first 10 feet off paved areas at 5.0 percent slope.

Taxiway longitudinal slopes will meet the maximum 1.5 percent slope requirements. Taxiway connector transverse slopes will be reconstructed to standard except where they are intersecting with the runway or another taxiway. Precedence is given to the runway in a runway-taxiway situation and to the parallel taxiway in a taxiway-taxiway situation. Taxiway F will be sloped towards the apron at 1.0-1.5 percent; this will be considered a shed section. This reduces the need to do a wide transition into the apron pavement and possible utility relocations. For the first ten feet of unpaved surface adjacent to the paved surface, a 3% cross slope is targeted. A 5% slope is not achievable as proposed surface is already below existing ground.

The existing non-standard condition will remain for the crown of the Taxiways B and F being higher than the Runway centerline in some areas. Some grades cannot be corrected due to matching elevations on the apron south of Taxiway F.

In the event Bid Alternate 1 is not awarded a Base Bid Transition is proposed to match the existing taxiway connectors pavement. If Alternate 2 is not awarded, Bid Alternate 1 Transition is proposed to match the new taxiway connector grades to Taxiway F existing pavement.

9.3. DRAINAGE CONSIDERATIONS

There are no significant drainage concerns within the Project limits. Although some of the existing infield grades are flatter than standard, all stormwater sheet flows away from the runway and taxiway centerlines and into the designated drainage areas and storm drain systems located throughout the airfield. A system of underground pipes is located between Runway 7-25 and Taxiway F in infield areas. Catch basins in the infield area collect stormwater into the pipes dispersing runoff to a detention area at the southwest corner of the Airport along the perimeter road and connect into the Victoria Ave storm drain system. An impervious area will be added to the existing Runway 25 blast pad, consisting of approximately 0.21 acres. The additional paved area is not expected to significantly increase runoff and is below the mitigation threshold indicated by the Ventura Technical Guidance Manual for Best Management Practices (BMPs). Thus, incorporation of post-construction BMPs in the Project is not expected. In total, the pavement area is reduced when considering the reduction in width of Connector Taxiways C and D (under Bid Alternate 1) and parallel Taxiway F for Bid Alternate 2.

Due to the shallow slopes in the in-fields, some areas of the proposed finished surface are below existing ground. Existing storm drain inlets will be protected in place and additional manholes will be constructed as

Mead & Hunt

Page 23 of 34

\\Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

part of underdrain system requirements. An analysis was completed to verify that the existing storm system is adequate based on the proposed grading plan.

The existing storm system within the project limits consists of 23 catchment areas. Each catchment area discharges its surface flow into an existing catch basin. Bid Alternate 1 will introduce a new catch basin within Catchment Area 7 and Bid Alternate 2 will introduce a new catch basin within Catchment Area 14. For simplicity in analysis, these new catch basins and their catchment areas were subdivided within the existing catchment area with an 'A' designation representing the existing catch basin and a 'B' designation representing the new catch basin.

Peak surface flow rates within catchment areas for pre-construction, Base Bid, Bid Alternate 1, and Bid Alternate 2 were computed using the Rational Method. Adequacy of the existing storm system was determined by comparing the pre-construction peak surface runoff rates to the Base Bid, Bid Alternate 1, and Bid Alternate 2 peak surface runoff rates using a 5-year storm event. For the Base Bid improvements there were two catchment areas where the peak flow increased by more 10%. For the Bid Alternate 1 improvements there were four catchment areas where the peak flow increased by more 10%. For Bid Alternate 2 the peak surface runoff rates decreased in most catchment areas. In the areas where the peak flow rate increased by more than 10%, the difference was minimal. For example, there was a 54% increase for Catchment 5 in Base Bid and Bid Alternate 1 improvements, but the flow rate only increased from 0.24 cfs to 0.37 cfs. The exhibits showing the catchment areas and a table showing the changes in peak surface runoff rates are included in *Appendix J*.

Changes in the peak surface runoff rate are attributed to geometric changes in catchment area boundaries due to a modified finished grade, changes in surface type, such an impermeable paved surface that is now a permeable seeded soil, and changes in elevations along the critical flow path from the most distant point in the catchment area. However, the proposed drainage conditions do not adversely impact the exiting drainage facilities and overall drainage characteristics of the site.

10. AIRFIELD LIGHTING AND SIGNAGE

10.1. EXISTING AIRFIELD LIGHTING, SIGNAGE, AND NAVAIDS

Runway 7-25 is equipped with medium intensity runway lights (MIRL), including edge, threshold, and end lights, along with FAA-owned four-box precision approach path indicators (PAPI) for each direction. Runway 7 is equipped with Runway End Identifier Lights (REIL) and Runway 25 is equipped with FAA-owned medium intensity approach lighting system with sequenced flashing lights (MALSF). The runway also has LED runway exit signs and LED runway distance remaining signs. Taxiways A, B, C, D, E, and F are equipped with medium intensity LED taxiway edge lights (MITL) and LED taxiway guidance signs.

An assessment of the electrical system revealed the following existing conditions:

Runway Lighting

- The runway edge lights meet spacing requirements of Advisory Circular 150/5340-30J. The FAA requirement for runway edge light spacing shall be consistent along the entire length of the runway and be no greater than 200 feet apart. The runway edge light spacing is 196.71 feet consistently along the runway.
- The runway L-867 light bases are individually grounded and were installed in 2013. The L-867 light bases were installed with drainage rock under each light base.
- The MIRLs utilize LED lamps and were installed in 2013. The fixtures were noted to be installed with consistent 14-inch stem heights, per construction details. The MIRLs are reaching the end of their useful

life. Replacement of the MIRLs under this Project would be the most cost-effective solution due to signs of deterioration and would avoid future runway closures.

Taxiway Lighting

- The MITLs utilize LED lamps and were installed in 2013. The fixtures were noted to be installed with consistent 14-inch stem heights, per construction details. The MITLs are reaching the end of their useful life. Replacement of the MITLs under this Project would be the most cost-effective solution and would avoid future runway closures.
- The taxiway light base cans will have to be removed and replaced due to the taxiway geometry changes.

<u>Signage</u>

- The spacing of the distance remaining signs on the runway does not meet Advisory Circular 150/5340-18G standards. Currently, five distance remaining signs, instead of four, are located on the north side of Runway 7-25. The existing distance remaining signs continue to be a maintenance issue and are also reaching the end of their useful life. Replacement of these airfield signs under this Project would be the most cost-effective solution due to indications of deterioration and would avoid future runway closures.
- The runway exit signs utilize LED technology and were replaced in 2013. Existing signs include a concrete pad with a base can to house the in-line isolation L-830 transformer. The existing runway exit signs continue to be a maintenance issue and are also reaching the end of their useful life. Replacement of the airfield signs under this Project would be the most cost-effective solution due to indications of deterioration and would avoid future runway closures.

Infrastructure

- The underground cable appears to be installed in schedule 40 PVC conduit. The runway and taxiways electrical conduit and cable were replaced in an electrical replacement project in 2013. Per the construction details, the 2-inch conduit is installed 2 feet under existing ground in paved and unpaved areas.
- Existing pullboxes and junction structures for the runway and taxiway are properly sized and were replaced as part of the electrical replacement project in 2013.
- The airfield is equipped with two airfield lighting circuits, one for the runway and one for all taxiways.
- The constant current regulators (CCRs) and other airfield NAVAIDs are controlled by a programmable logic controller (PLC) cabinet in the electrical switchgear room. The PLC cabinet was replaced in 2013 and is in good operating condition.
- The existing electrical switchgear room is located adjacent to the airport traffic control tower (ATCT). The building had all the electrical equipment renovated and upgraded in 2013. The vault houses two CCRs, one for the runway and one for the taxiways. The airfield vault is fed from an existing 8-parallel 250 MCM, THWN connecting to an existing 112.5kVA, 120/240V, 3P-3W delta transformer.
- The Runway 7-25 circuit is fed from a Siemens L-828 15 kW, 3-step CCR that was installed in 2013 and is in good operating condition. The runway circuit includes all MIRLs, runway distance remaining signs, and mandatory signs. Load calculations were done, and they confirm that the 15 kW CCR is sufficient for the Runway circuit load.

Nead Hunt. NCorp.meadhunt.com/sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

- The Taxiway circuit is fed from a Siemens L-828 15 kW, 3-step CCR that was installed in 2013 and is in good operating condition. The taxiway circuit includes all MITLs and guidance signs. Load calculations were done, and they confirm that the 15 kW CCR is sufficient for the Taxiway circuit load.
- Pilot controlled lighting includes the MALSF, REILs, runway and taxiway edge lights.
- The glide slope antenna is located east of Taxiway B.
- An Automated Surface Observing System (ASOS) is located west of Taxiway B.
- A primary lighted wind cone is located north of Taxiway F and west of Taxiway C. One of the supplemental lighted wind cones is located in the infield west of Taxiway A and the other one is located east of taxiway E. There is an anemometer east of the segmented circle.

10.2. AIRFIELD LIGHTING, SIGNAGE, AND NAVAID RECOMMENDATIONS

10.2.1. Runway Recommendations

Due to the improvements needed on Runway 7-25 pavement, the current airfield electrical system will need to be adjusted to the new runway surface grade per the preferred pavement design and surface option. Modifications to the electrical system will be necessary for both pavement improvement options. Adjustments for the spacing of the distance remaining signs will be necessary for both rehabilitation and reconstruction. It is also recommended that MIRLs, and runway exit and distance remaining signs be replaced as part of this Project for the reasons specified above.

With the reconstruction option, the runway surface grades will be raised up to 9 inches on the centerline. However, due to the steeper transverse slopes on the runway, the light cans will not need to be raised by more than six inches. New electrical cable and new counterpoise will be installed on the runway circuit due to the light can elevation adjustments and length of spare cable available to accommodate the adjustment. The MALSF light bars will need to be modified as described in Section 8.1.3. For the reconstruction option, four bars are required to be higher. They will need to be removed and replaced. The MALSF bars were previously considered to be adjusted without being removed. However, due to concerns with their concrete foundation integrity if sawcut and adjusted, it is recommended they be demolished and reconstructed. In the event that Bid Alternate 1 is not awarded, elevation adjustments to some of the runway signs are anticipated under Base Bid Transition due to proposed runway grades.

The electrical improvements on Runway 7-25 will be more extensive in a pavement rehabilitation. In this case, all the light cans will need to be raised by approximately 17 inches for the additional aggregate base required to keep the existing transverse slopes. Due to the elevation changes of the light cans, installation of new conduit and cable will be required, as well as new counterpoise. Adjustments to the MALSF bars will be more than a few inches and will require removal and reconstruction of all the bars. For the rehabilitation option, elevation adjustments of sign pads will be necessary as tie-in to existing grades occurs further from the pavement edge. However, this option is not considered due to the decision to only advance with the lime-treated subgrade reconstruction option.

The airfield electrical system improvements for the runway reconstruction and rehabilitation options discussed above are summarize below:

Electrical Modifications included with Runway Reconstruction Option

- 1) Runway edge light base can adjustments.
- 2) MIRLs fixtures replacement.

- 3) MALSF light bars removal and replacement.
- 4) New counterpoise system installation.
- 5) New runway MIRL cable in existing conduit installation.
- 6) Runway Exit signs replacement.
- 7) Runway Distance Remaining signs replacement.
- 8) Other NAVAIDS adjustments, such as REILs relocation.

Electrical Modifications included with Runway Rehabilitation Option (included for reference only)

- 1) Airfield electrical removals.
- 2) MIRLs fixtures replacement.
- 3) Existing base cans replacement.
- 4) Airfield signs elevation adjustments.
- 5) New runway MIRL conduit and cable installation.
- 6) New counterpoise system installation.
- 7) MALSF light bars removal and replacement.
- 8) Runway Exit signs replacement.
- 9) Runway Distance Remaining signs replacement.
- 10) Other NAVAIDS adjustments, such as REILs relocation.

10.2.2. Taxiway Recommendations

Due to the standardized geometry of the taxiway connectors and Taxiway F shift to the south, modifications to the electrical system will be necessary. New taxiway edge lights, electrical conduits, conductors, counterpoise, and signs will be installed on a taxiway circuit as part of Bid Alternates 1 and 2. In the event that Bid Alternate 1 is not awarded, a transition is proposed where taxiway edge lights will be adjusted to grade and signs will be installed. In the event that Bid Alternate 2 is not awarded, a transition is proposed where interim taxiway edge lights and signs will be installed. New conduits with new conductors will be installed and connected to the existing taxiway circuit. Note that these transitions are designed as temporary and do not meet standard fillet design.

If Bid Alternate 1 or 2 is awarded, all the taxiways will be renamed to be alphanumeric. Taxiway F will become Taxiway A and the taxiway connectors will be renamed A1 to A5 from east to west. Panel replacement on the new signs and taxiway renaming shall occur after all other construction is complete. The panel swap date shall comply with FAA publication cycle of airport diagrams per the NFDC aeronautical information portal.

11. NAVAIDS AND FAA-OWNED FACILITIES

11.1. MALSF

The existing MALSF is FAA-owned and located on the Runway 25 approach. The runway reconstruction and rehabilitation options would increase the runway profile elevation, which would require the threshold bar and centerline light elevations to be adjusted, as described in the previous section. A reimbursable agreement with the FAA is in place to support these modifications.

Page 27 of 34

\\Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

11.2. GLIDESLOPE

The existing glideslope equipment is FAA-owned and located in the infield between Runway 7-25 and Taxiway F, and Taxiway D and Taxiway E. It is believed the runway reconstruction option would not require a modification to the approach procedure. During construction, this will require a temporary deactivation by FAA Technical Operations and a flight check to reactivate as part of the reimbursable agreement. The reimbursable agreement with the FAA will confirm the approach procedure. Both options require a temporary deactivation by FAA Technical Operations and a flight check to reactivate as part of the reimbursable agreement.

11.3. LOCALIZER

The existing localizer equipment is FAA-owned and located at the end of Runway 25 (beginning of Runway 7). No modifications to this equipment are anticipated for this Project. During construction, this will require a temporary deactivation by FAA Technical Operations and a flight check to reactivate as part of the reimbursable agreement.

11.4. PAPI

The existing four-box PAPIs are FAA-owned and located on both runway approaches. Review of Threshold Crossing Height (TCH) revealed that Runway 7 PAPI will have to be adjusted by less than one inch to have a 40 feet TCH. Existing PAPI for Runway 25 is sitting more than 1.7 feet higher than existing runway centerline. With the proposed profile, the PAPI light housing assemblies (LHAs) will be 1.3 feet higher than the proposed runway centerline. As coordinated with FAA during final design, both PAPIs will be protected in place. Note that the grades adjacent to the PAPIs will not be changed. During construction the PAPIs will be protected with high visibility plastic fence, temporary deactivated by FAA Technical Operations, and flight checked to reactivate as part of the reimbursable agreement.

11.5. REILS

The existing LED REILs are Airport-owned and located on Runway 7. Both the runway reconstruction and the rehabilitation alternatives would increase the runway profile elevation, which require relocation and adjustment to the REILs.

11.6. WIND CONE AND SEGMENTED CIRCLE

The Airport is equipped with a primary lighted wind cone and segmented circle, with supplemental lighted wind cones at each end of the runway. All the wind cones are LED and the primary wind cone has an external lighting assembly. Only the cable feeding the wind cones will be removed and replaced, as all windcones are on the runway circuit. No other modifications to this equipment are anticipated for this Project.

12. PAVEMENT MARKINGS

FAA criteria listed in recently updated Advisory Circular 150/5340-1M provides guidance for the marking of airfield pavements. This Project will include new runway markings that meet current standards. The runway approach type is a non-precision instrument for Runway 7 and a precision instrument for Runway 25. The approach type dictates which runway markings are required. All markings will be designed to have the correct length, width, and spacing. Based on the distance between the displaced thresholds on the runway, the touchdown zone markings will be adjusted and marked accordingly. The taxiway centerline radii leading onto the runway will be designed to meet current requirements for Taxiway Design Group (TDG) 3. All new markings will include a black border, which is required for the runway and holding position markings and recommended

Nead Hunt Page 28 of 34
\\Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final
compiled wAppdx.docx

for the taxiway centerline markings. All new markings should be conventional waterborne paint with Type I reflective media for red paint and Type III reflective media for the rest of the paint colors, as applicable.

In the event that Bid Alternates 1 and 2 are not awarded, a transition is proposed where interim nonstandard taxiway pavement markings will be installed.

13. ENVIRONMENTAL CONSIDERATIONS

Due to the nature of the improvements, the FAA has determined that the proposed Project is Categorically Excluded, pursuant to FAA Order 1050.1F, Paragraph 5-6.4e, as it relates to the National Environmental Policy Act (NEPA) of 1969, as amended. The Project will not disturb any native ground areas. All construction will be performed within existing disturbed limits. Originally a Categorical Exclusion (CATEX) was submitted and approved for the Runway 7-25 and Connector Taxiways. Then a revalidation letter was sent and approved to include the Runway 25 blast pad construction and a CATEX was later submitted to include Taxiway F reconstruction. See *Appendix K* for the FAA Categorical Exclusion Approval letters.

14. UTILITY LINES IN WORK AREA

The known utilities are shown on the Project plans. Utilities known to cross the work area are as follows:

Utility	Provider
FAA Electrical and Communication	FAA
Airfield Electrical	County of Ventura
Electrical	Southern California Edison
Water	City of Oxnard
Storm Drain	City of Oxnard

Table 9. Known Utilities

Other utilities that may cross the work area, but no as-built have been located include:

Table 10. Possible Utilities

Utility	Provider
Telephone	Verizon
Sanitary Sewer	City of Oxnard
Gas	Southern California Gas Company (Sempra Energy)

The contractor must comply with Dig Alert/Underground Service Alert of Southern California requirements for underground service alert. There are utilities crossing the Airport, and the contractor will be required to pothole at locations for existing utility conflicts. In the unlikely event a utility is disrupted, the contractor is responsible for contacting that utility company and requesting the repair. All existing utilities should be protected in place unless otherwise noted. The Airport will assist with the location of County-owned utilities.

Nead Hunt Page 29 of 34 \Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final
compiled wAppdx.docx

15. DELINEATION OF AIP ELIGIBLE AND INELIGIBLE WORK ITEMS

The Project design and construction are expected to be funded by FAA Airport Improvement Plan (AIP) Grant Nos. 3-06-0179-037-2020 (Design) and 3-06-0179-038-2021 (Construction). All Project elements are anticipated to be AIP eligible.

16. DBE PARTICIPATION

The FAA grant for this Project would exceed \$250,000; therefore, a Disadvantaged Business Enterprise (DBE) program is required. The County of Ventura DBE Program, dated May 2017, is approved by the FAA. Language will be included in the bidding documents to encourage DBE participation. The established DBE goal is 6.03 percent. A draft DBE Program was submitted for the Fiscal Years (FY) 2019 to 2021 in February 2019, which proposes an average DBE goal of 5 percent on average during the three FYs.

17. PROJECT SCHEDULE

17.1. DESIGN AND BIDDING SCHEDULE

The Project design schedule is detailed in the following table:

Target Date	Design Milestone
October 3, 2018	Runway Preliminary Design Contract Award – Complete
October 28 –	
November 1, 2018	Topographic Survey field work (ECG) – Complete
October 28 –	
November 1, 2018	Geotechnical Investigation field work (Earth Systems) – Complete
November 13, 2018	Topographic Survey drawing received (ECG) – Complete
December 20, 2019	Topographic Survey drawing received (ECG) – Complete
October 2019	Preliminary Design Concept Report Submittal – Complete
June 12, 2020	CATEX Approved – Complete
June 16, 2020	Design Contract Award for Runway 7-25, Taxiway Connectors, and Parallel Taxiway Reconstruction Project – Complete
July 24, 2020	Geotechnical Investigation report (Earth Systems) – Complete
July 2020	Finalize Preliminary Design Concept Report – Complete
July 14, 2020	Preliminary (30%) Submittal (Bid Alternates 1 and 2 only) – Complete
July 31, 2020	County/FAA Review – Complete
August 25, 2020	Public Outreach Workshop #1 (online) – Complete
September 30, 2020	60% Submittal – Complete
October 13, 2020	County/FAA Review – Complete County comments received – 10/23/20 FAA ATO comments received – 11/2/20 FAA LA-ADO comments received – 11/10/20
November 17, 2020	Public Outreach Workshop #2 – Complete
January 7, 2021	95% Submittal – Complete

Mead&Hunt

Page 30 of 34

\\Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

Target Date	Design Milestone
	County/FAA Review – Complete
	County comments received – 2/2/21, 2/10/21
	FAA ATO comments received – 2/2/21
	FAA LA-ADO comments received – 2/3/21
January 28, 2021	FAA Part 139 Inspector comments received – 2/5/21
February 25, 2021	100% Submittal – Complete
	County/FAA Review – Complete
	County comments received – 3/15/2021
	FAA ATO comments received – 3/15/2021; 3/17/2021
March 11, 2021	FAA LA-ADO comments received – 3/17/2021
March 30, 2021	Final Bid Documents – Complete
March 30, 2021	Advertise for Bidding – Complete
April 29, 2021	Open Bids
May 12, 2021	Bid Tabulation and Recommendation for Award
After Bid Opening	Public Outreach Workshop #3

The design and bidding schedule are subject to County approval of revised schedule, County and FAA review of the final design, as well as FAA funding availability.

17.2. CONSTRUCTION SCHEDULE

To assist the Contractor in sequencing the work, an example schedule for each award scenario (total of 3) has been included as *Appendix H*. This schedule is intended as a guide only and may not incorporate all means and methods required by the Contractor. The example schedule shall in no way override any of the requirements listed in the CSPP and contract documents. The Contractor is responsible for planning and sequencing the work in order to meet the limitations specified.

It is anticipated that the Notice to Proceed (NTP) for Mobilization Phase 1 will be on June 14, 2021, and the NTP for Mobilization Phase 2 and Construction is June 28, 2021. These dates are an estimated schedule. If delay of the FAA grant does not permit Construction Phase 1 completion by November 1, 2021, the Project may not start until 2022 to avoid a suspension of work with an unusable runway.

18. ENGINEER'S ESTIMATE OF PROBABLE COST

This Project will be bid with a Base Bid (two Bid Schedules), Bid Alternate 1 (two Bid Schedules), and Bid Alternate 2 (one Bid Schedule).

The construction cost estimates were developed for each of the Bid Schedules. The estimated construction costs are summarized below:

	Bid Schedule	Description	Bid Schedule Construction Cost Estimate
Base Bid	А	Base Bid Work	\$ 11,845,601.00
(Runway)	В	Base Bid Transition Work	\$ 838,035.00
Bid Alternate 1	С	Bid Alternate 1 Work	\$ 3,049,275.00
(Taxiway Connectors)	D	Bid Alternate 1 Transition Work	\$ 1,117,340.00
Bid Alternate 2 (Parallel Taxiway)	E	Bid Alternate 2 Work	\$ 11,496,170.00

Table 11 Estimated Dre	iast Construction Cos	to nor Pid Schodula
Table 11. Estimated Pro	ject construction cos	is per blu Schedule

	Bid Schedules	Alternate Construction Cost Estimate
Base Bid + Base Bid Transition	A + B	\$ 12,683,636.00
Base Bid + Bid Alternate 1 + Bid Alternate 1 Transition	A + C + D	\$ 16,012,216.00
Base Bid + Bid Alternate 1 + Bid Alternate 2	A + C + E	\$ 26,391,046.00

A detailed breakdown of the estimated Project costs for each Bid Schedule are included as Appendix L.

19. PROJECT BUDGET

The Project budget summary that identifies all anticipated Project costs without price escalation is shown as follows.

Table 13. Project Budget

Task	Budget
Runway 7-25, Taxiway Connectors, and Parallel Taxiway Reconstruction	\$ 26,391,046.00
County Administration	\$ 529,000.00
Preliminary Design	\$ 157,640.00
Final Design	\$ 1,507,309.14
Topographic Survey	\$ 26,795.00
Geotechnical Investigation	\$ 176,695.00
Resident Engineering	\$ 1,453,000.00
Materials Testing	\$ 397,000.00
Construction Administration	\$ 1,319,700.00
Reimbursable Agreement	\$ 150,000.00
Construction Contingency (3%)	\$ 791,731.38
Total	\$ 32,899,916.52

20. RECOMMENDATIONS

The recommended improvement option for Runway 7-25 is the runway reconstruction alternative consisting of 4 inches of asphalt surface course, 8.5 inches of crushed aggregate base course, and 16 inches of lime-treated subgrade. The preferred design alternative for the taxiways is the lime-treated subgrade design alternative, which consists of 4 inches of asphalt surface course, 9 inches of crushed aggregate base course, and 16 inches of lime-treated subgrade. These solutions present the best balance of minimizing the operational disruption to the Airport by keeping overall construction costs to a minimum, reducing export costs by raising the runway centerline, and accounting for wet subgrade conditions.

Furthermore, these options will correct non-standard transverse and longitudinal grades on the runway and taxiway pavements. The reconstruction option on the runway option also reduces the impact on the runway electrical system, as only minor elevation adjustments are needed for the base cans. This Project does not include correction or remedy of the RSA, TSA, and TOFA slopes, as this is outside of the approved environmental area and expected to be done as part of a future project.

Respectfully submitted by,

MEAD & HUNT, Inc.

Clarlos S. Mulant

Chuck McCormick Project Manager

Jannet Zoera

Jannet Loera, PE

Senior Engineer

Mead & Hunt

Page 33 of 34

\\Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

Appendices:

Appendix A	Project Layout Plan
Appendix B	13A Survey Analysis Summary
Appendix C	Site Photographs
Appendix D	Geotechnical Engineering Report
	Part 1 – 2020 Geotechnical Report
	Part 2 – Addendum No. 1, Sulfate Testing of Subgrade Soils
Appendix E	Aircraft Fleet Mix
Appendix F	FAARFIELD Airport Pavement Design Reports
Appendix G	Life Cycle Cost Analysis
Appendix H	Construction Schedule
Appendix I	Preliminary Runway Surface Analysis
Appendix J	Drainage Catchment Areas
Appendix K	FAA CATEX Approval Letter
Appendix L	Engineer's Estimate of Probable Cost

 Mead Hunt
 Page 34 of 34

 \\Corp.meadhunt.com\sharedfolders\entp\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

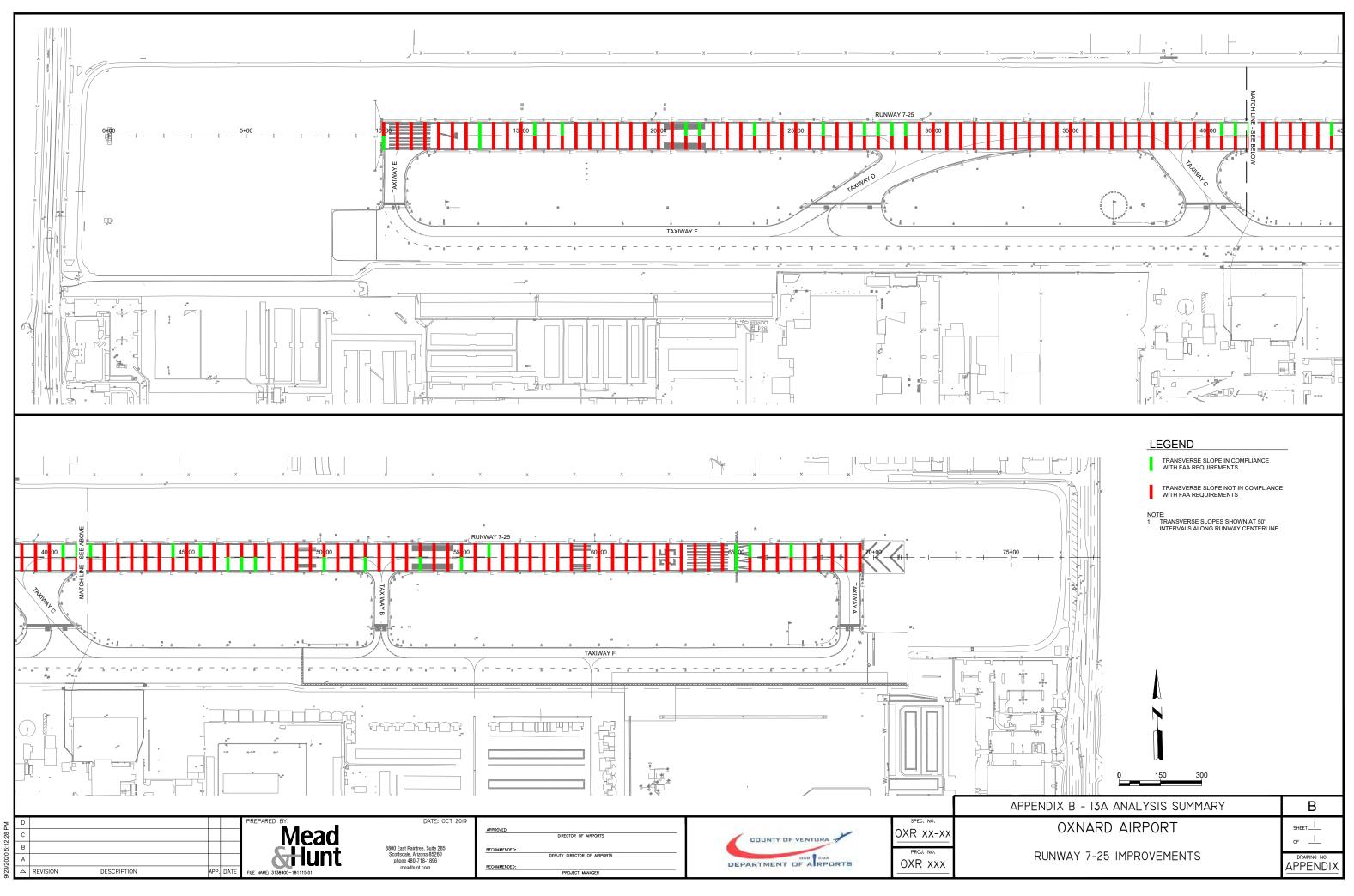
APPENDICES

X:\3138400\181115.02\TECH\Design\Reports\Engineering\100%\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report-100% compiled wAppdx.docx

Appendix A – Project Layout Plan

Mead & Hunt X:\3138400\181115.02\TECH\Design\Reports\Engineering\100%\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report-100% compiled wAppdx.docx

Appendix B - 13A Analysis Summary


Mead & Hunt X:\3138400\181115.02\TECH\Design\Reports\Engineering\100%\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report-100% compiled wAppdx.docx

A2

EXISTING NON-STANDARD CONDITIONS TABLE				
DEVIATION	FAA STANDARD	EXISTING CONDITION	PROPOSED CORRECTION	
RUNWAY OBJECT FREE AREA (ROFA)	THE ROFA CLEARING STANDARD REQUIRES CLEARING THE ROFA OF ABOVE-GROUND OBJECTS PROTRUDING ABOVE THE NEAREST POINT OF THE RSA. OBJECTS NON-ESSENTIAL FOR AIR NAVIGATION OR AIRCRAFT GROUND MANEUVERING PURPOSES MUST NOT BE PLACED IN THE ROFA. THE ROFA FOR AN RDC OF D-III IS 400 FEET FROM THE RUNWAY CENTERLINE, 1,000 FEET BEYOND THE RUNWAY END, AND 600 FEET PRIOR TO THE THRESHOLD.	COMMERCIAL PARKING LOT AND ASSOCIATED OBSTRUCTIONS ARE 370 FEET SOUTH OF THE RUNWAY CENTERLINE; A PERIMETER SERVICE ROAD IS 255 FEET NORTH OF THE RUNWAY CENTERLINE AND 330 FEET SOUTH OF THE	CORRECTION OF THESE CONDITIONS ARE OUTSIDE THE SCOPE OF THIS PROJECT.	
RUNWAY SAFETY AREA (RSA)	THE RSA MUST BE FREE OF OBJECTS, EXCEPT FOR OBJECTS THAT NEED TO BE LOCATED IN THE RSA BECAUSE OF THEIR FUNCTION. THE RSA FOR AN RDC OF D-III IS 250 FEET FROM THE RUNWAY CENTERLINE, 1,000 FEET BEYOND THE DEPARTURE END, AND 600 FEET PRIOR TO THE THRESHOLD.	THE SEGMENTED CIRCLE IS 200 FEET SOUTH OF THE RUNWAY CENTERLINE AND IT IS NOT CONSIDERED FIRED BY FUNCTION	CORRECTION OF THESE CONDITIONS ARE OUTSIDE THE SCOPE OF THIS PROJECT.	
RUNWAY SAFETY AREA (RSA) GRADES	FOR APPROACH CATEGORY D, TABLE 3-3 AND FIGURE 3-23 OF THE ADVISORY CIRCULAR SPECIFY THAT THE MINIMUM AND MAXIMUM GRADES IN THE RSA SHALL BE 1.5% AND 3.0% RESPECTIVELY, AWAY FROM THE RUNWAY.		CORRECTION OF THESE CONDITIONS ARE OUTSIDE THE SCOPE OF THIS PROJECT.	
RUNWAY PROTECTION ZONE (RPZ)	THE RPZ'S FUNCTION IS TO ENHANCE THE PROTECTION OF PEOPLE AND PROPERTY ON THE GROUND. THIS IS BEST ACHIEVED THROUGH AIRPORT-OWNER CONTROL OF RPZS. CONTROL IS PREFERABLY EXERCISED THROUGH THE ACQUISITION OF SUFFICIENT PROPERTY INTEREST IN THE RPZ AND INCLUDES CLEARING RPZ AREAS OF INCOMPATIBLE OBJECTS AND ACTIVITIES. THE RPZ FOR AN RDC OF D-III HAS A 1,700-FOOT LENGTH, 500-FOOT INNER WIDTH, 1,010-FOOT OUTER WIDTH, AND STARTS 200 FEET FROM THE RUNWAY END.	VENTURA ROAD, K STREET, 2ND STREET, AND COMMERCIAL/RESIDENTIAL PROPERTIES ARE WITHIN THE RUNWAY 25 RPZ; VICTORIA AVENUE IS WITHIN THE RUNWAY 7 RPZ.	CORRECTION OF THESE CONDITIONS ARE OUTSIDE THE SCOPE OF THIS PROJECT.	
SHOULDER WIDTH	RUNWAY SHOULDER WIDTH FOR D-III UNDER 150,000 LBS MAXIMUM TAKEOFF WEIGHT IS 20-FT	RUNWAY 7-25 DOES NOT HAVE PAVED SHOULDERS	AGGREGATE BASE TO BE PLACED ON ALL SHOULDERS TO A 20 FOOT WIDTH	
BLAST PAD DIMENSIONS	BLAST PAD DIMENSION REQUIREMENTS FOR D-III UNDER 150,000 LBS MAXIMUM TAKEOFF WEIGHT IS 140'X140'	RUNWAY 25 BLAST PAD IS 163'X120'	RUNWAY 25 BLAST PAD TO BE RECONSTRUCTED TO PROPER DIMENSIONS	
RUNWAY OBJECT FREE AREA (ROFA) DIMENSIONS	ROFA IS 800-FT WIDE AND 1,000-FT BEYOND THE RUNWAY END. THE ROFA IS 600-FT PRIOR TO THE RUNWAY THRESHOLD	RUNWAY 7-25 HAS A ROFA WIDTH OF 575-FT AND EXTENDS 975-FT BEYOND RUNWAY 25 AND IS 715- FT LONG PRIOR TO RUNWAY 25	ROFA LIMITS TO BE REDEFINED TO MATCH CURRENT FAA STANDARDS	
RUNWAY SAFETY AREA (RSA) DIMENSIONS	RSA IS 500-FT WIDE AND 1000-FT BEYOND THE RUNWAY END. THE RSA IS 600-FT PRIOR TO THE RUNWAY THRESHOLD	RUNWAY 7-25 RSA EXTENDS 975-FT BEYOND RUNWAY 25 AND IS 715-FT LONG PRIOR TO RUNWAY 25	RSA LIMITS TO BE REDEFINED TO MATCH CURRENT FAA STANDARDS	
RUNWAY LONGITUDINAL GRADE CHANGES	THE MAXIMUM ALLOWABLE GRADE CHANGE IS ± 1.50%; HOWEVER, NO GRADE CHANGES ARE ALLOWED IN THE FIRST AND LAST QUARTER, OR FIRST AND LAST 2,500 FEET, WHICHEVER IS LESS, OF THE RUNWAY LENGTH	GRADE CHANGES OCCUR IN THE FIRST AND LAST QUARTER OF THE RUNWAY VARYING FROM 0.10% TO 0.40%	GRADES TO BE ALTERED TO REMOVE GRADE CHANGES IN THE FIRST AND LAST QUARTER OF THE RUNWAY	

	EXISTING NON-STANDARD	CONDITIONS TABLE	
DEVIATION	FAA STANDARD	EXISTING CONDITION	PROPOSED CORRECTION
RUNWAY LONGITUDINAL VERTICAL CURVE LENGTH	VERTICAL CURVES FOR LONGITUDINAL GRADE CHANGES ARE PARABOLIC. THE LENGTH OF THE VERTICAL CURVE IS A MINIMUM OF 1,000 FEET FOR EACH 1.0% OF CHANGE	ALL GRADE CHANGES ON RUNWAY 7-25 REQUIRE VERTICAL CURVES. THERE ARE GRADE CHANGES UP TO 0.40% WITHOUT VERTICAL CURVES ON THE RUNWAY	GRADE CHANGES TO INCLUDE VERTICAL CURVES MEETING OR EXCEEDING CURRENT FAA STANDARDS
RUNWAY TRANSVERSE GRADES	RUNWAY TRANSVERSE GRADES MUST BE BETWEEN ± 1.0% AND ± 1.5%	RUNWAY 7-25 TRANSVERSE GRADES RANGE FROM 0.10% TO 2.08%	RUNWAY TRANSVERSE GRADES TO BE BROUGHT INTO COMPLIANCE
BLAST PAD LONGITUDINAL GRADES	FOR THE FIRST 200 FEET OF THE RSA BEYOND THE RUNWAY ENDS, THE LONGITUDINAL GRADE IS BETWEEN 0 AND 3.0 PERCENT, WITH ANY SLOPE BEING DOWNWARD FROM THE ENDS.	RUNWAY 25 BLAST PAD LONGITUDINAL GRADES RANGE FROM 0.0 PERCENT TO 0.6 PERCENT WITH SLOPES BEING UPWARD FROM THE END.	RUNWAY 25 BLAST PAD GRADES TO BE BROUGHT INTO COMPLIANCE
RUNWAY - TAXIWAY TRANSITIONS	PROVIDE A SMOOTH TRANSITION BETWEEN INTERSECTING PAVEMENT SURFACES AS WELL AS ADEQUATE DRAINAGE OF THE INTERSECTION. GIVE PRECEDENCE TO THE GRADES FOR THE RUNWAY IN A RUNWAY-TAXIWAY SITUATION	PAVEMENT TRANSITION BETWEEN THE RUNWAY AND TAXIWAY A IS NOT SMOOTH FROM 0.48% TO 1.61% PAVEMENT TRANSITION BETWEEN THE RUNWAY AND TAXIWAY B IS NOT SMOOTH FROM 0.58% TO 1.24% PAVEMENT TRANSITION BETWEEN THE RUNWAY AND TAXIWAY C IS NOT SMOOTH FROM 0.40% TO 1.10% PAVEMENT TRANSITION BETWEEN THE RUNWAY AND TAXIWAY D IS NOT SMOOTH FROM 0.49% TO 0.97% AT THE RUNWAY 7 END AND FROM 0.40% TO 0.88% AT THE RUNWAY 25 END PAVEMENT TRANSITION BETWEEN THE RUNWAY AND TAXIWAY E IS NOT SMOOTH FROM 0.67% TO 1.31%	RUNWAY-TAXIWAY TRANSITIONS WILL BE SMOOTHED BY ADJUSTMENT OF GRADING
TAXIWAY WIDTH	TAXIWAY WIDTH FOR A TDG-3 IS 50 FEET.	TAXIWAY WIDTHS RANGE FROM 50 FEET TO 130 FEET.	IF BID ALT 1 IS AWARDED, THE WIDTH OF THE TAXIWAYS WILL BE ADJUSTED TO COMPLY WITH THIS STANDARD
RUNWAY TO TAXIWAY SEPARATION	D-III REQUIREMENT IS 400 FEET	DISTANCE FROM THE PARALLEL TAXIWAY TO RUNWAY CENTERLINE IS 366-FT	IF BID ALT 2 IS AWARDED, SEPARATION OF TAXIWAY F TO THE RUNWAY WILL BE INCREASED TO 400 FEET
RUNWAY TO AIRCRAFT PARKING AREA	D-III REQUIREMENT IS 500 FEET	PARKING STRIPE SOUTH OF TAXIWAY CONNECTOR C INCURS THE 500 FT BOUNDARY	THE PARKING STRIPE WILL BE ADJUSTED IF BID ALT 2 IS AWARDED
RUNWAY - TAXIWAY INTERSECTIONS	ACUTE ANGLES SHOULD NOT BE LARGER THAN 45 DEGREES FROM THE RUNWAY CENTERLINE.	TAXIWAY C HAS AN ANGLE OF 50 DEGREES FROM RUNWAY 7-25.	IF BID ALT 1 IS AWARDED, THE GEOMETRY OF TAXIWAY C WILL BE ADJUSTED TO COMPLY WITH THIS STANDARD
INDIRECT ACCESS	TAXIWAYS THAT LEAD DIRECTLY FROM APRON TO RUNWAY REQUIRE A TURN.	DIRECT ACCESS FROM APRON TO RUNWAY 7-25	APRON ACCESS WILL NOT BE ADDRESSED WITHIN THE SCOPE OF THIS PROJECT
TAXIWAY CENTERLINE TO OBJECT SEPARATION	TAXIWAY CENTERLINE TO OBJECT SEPARATION, AS SHOWN IN FIGURE 4-8 AND TABLE 4-1, IS EQUAL TO 0.7 TIMES THE MAXIMUM WINGSPAN OF ADG, PLUS 10 FEET.	ILS GLIDESLOPE ANTENNA EQUIPMENT EAST OF TAXIWAY B IS 84 FEET FROM TAXIWAY B CENTERLINE. TO MEET ADG-III REQUIREMENTS, A SEPARATION OF 93 FEET FROM FIXED OR MOVABLE OBJECT IS REQUIRED.	IF BID ALT 1 IS AWARDED, TAXIWAY B CENTERLINE WILL BE SHIFTED WEST TO COMPLY WITH THIS STANDARD

	EXISTING NON-STANDARD CONDITIONS TABLE			
DEVIATION	FAA STANDARD	EXISTING CONDITION	PROPOSED CORRECTION	
TAXIWAY FILLET DESIGN	PAVEMENT FILLETS AT TAXIWAY INTERSECTIONS ARE DESIGNED FOR ENTIRE SELECTED TDG AND MUST ACCOMMODATE ALL AIRCRAFT OF ALL LESSER TDGS.	NONE OF THE TAXIWAYS MEET CURRENT FAA FILLET DESIGN.	TAXIWAY FILLET GEOMETRIES WILL BE BROUGHT INTO MAXIMUM POSSIBLE COMPLIANCE, DEPENDING ON THE BID ALT AWARDED.	
HIGH SPEED EXITS	THE RADIUS OF THE EXIT FROM THE RUNWAY SHOULD ALWAYS BE 1500 FEET.	ON HIGH SPEED TAXIWAY D THE EXISTING RADIUS OF THE EXIT FROM RUNWAY IS 1254 FEET.	THIS GEOMETRY WILL BE CORRECTED IF BID ALT 1 AND 2 ARE AWARDED	
TAXIWAY SURFACE GRADIENT	THE CROWN OF THE TAXIWAY SHOULD NOT BE HIGHER THAN THE CROWN OF THE RUNWAY.	TAXIWAYS B AND F ARE HIGHER THAN THE RUNWAY IN SOME AREAS	SOME GRADES CANNOT BE CORRECTED DUE TO MATCHING ELEVATIONS ON THE APRON SOUTH OF TAXIWAY F	
TAXIWAY TRANSVERSE SLOPES	CROSS-SECTION SLOPES ON PAVED AREAS FOR AN APPROACH CATEGORY MUST BE BETWEEN 1.0 PERCENT AND 1.5 PERCENT. THE IDEAL CONFIGURATION IS A CENTER CROWN WITH EQUAL, CONSTANT TRANSVERSE GRADES ON EITHER SIDE. HOWEVER, AN OFF-CENTER CROWN, DIFFERENT GRADES ON EITHER SIDE, SHED SECTIONS, AND CHANGES IN TRANSVERSE GRADES (OTHER THAN FROM ONE SIDE OF THE CROWN TO THE OTHER) OF NO MORE THAN 0.5 PERCENT ARE PERMISSIBLE. A 1.5-INCH DROP BETWEEN PAVED AND UNPAVED AREAS SHOULD BE PROVIDED, AND THE FIRST 10 FEET OFF PAVED AREAS NEEDS TO BE AT 5.0 PERCENT SLOPE.	TAXIWAYS HAVE FLATTER AND STEEPER TRANSVERSE SLOPES THAN THE STANDARDS.	GRADES WILL BE ADJUSTED TO BE IN COMPLIANCE IF BID ALT 1 AND 2 ARE AWARDED.	
TAXIWAY LONGITUDINAL GRADES	MAXIMUM LONGITUDINAL GRADE FOR AIRCRAFT APPROACH CATEGORY C, D,AND E IS 1.5%. THE MINIMUM LENGTH OF THE VERTICAL CURVE IS 100 FEET FOR EACH 1.0% OF CHANGE WHEN USING LONGITUDINAL GRADES. A VERTICAL CURVE NOT NECESSARY WHEN GRADE CHANGE IS LESS THAN 0.40%, NOR WHERE TAXIWAY CROSSES RUNWAY OR TAXIWAY CROWN.	IN SOME AREAS TAXIWAYS HAVE LONGITUDINAL GRADES THAT ARE HIGHER THAN THE MAXIMUM ALLOWED. VERTICAL CURVES DO NOT MEET THE LENGTH REQUIREMENT.	GRADES WILL BE ADJUSTED TO BE IN COMPLIANCE IF BID ALT 1 AND 2 ARE AWARDED.	

138400/181115.01/TECH/CAD/DRAW/INGS/EXHIBITS/DCR/APPENDIX - 13A AN/

Appendix C - Site Photographs

Mead & Hunt X:\3138400\181115.02\TECH\Design\Reports\Engineering\100%\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report-100% compiled wAppdx.docx

Photo 1: Runway 7-25 Alligator Cracking

Photo 2: Runway 7-25 Asphalt Scarification

Photo 3: Runway 7-25 Longitudinal Cracking

Photo 4: Runway 7-25 Weathering

Photo 5: Blast Pad and MALSF System

Photo 6: MALSF System

Photo 7: Runway 7-25 Weathering

Photo 8: Runway 7-25 Longitudinal Cracking

Photo 9: Runway 7-25 Longitudinal Cracking

Photo 10: Runway 7-25 Wind Cone

Photo 11: Runway 7-25 Weathering

Photo 12: Runway 7-25 Weathering

Photo 13: Glide Slope Antenna and Runway 25 PAPI

Photo 14: Taxiway A Block Cracking

Photo 15: Runway Edge In-Pavement Lights

Photo 16: Taxiway B Weathering

Photo 17: Taxiway B and Glide Slope Antenna

Photo 18: Taxiway C Alligator Cracking

Photo 19: Taxiway D Block Cracking

Photo 20: Taxiway D Block Cracking

Photo 21: Taxiway F Longitudinal Cracking

Photo 22: Taxiway F Weathering

Photo 23: Taxiway E Weathering

Photo 24: East Run-up Apron

Appendix D - Geotechnical Engineering Report

Mead&Hunt

Part 1 – Geotechnical Engineering Reports

Mead & Hunt X:\3138400\181115.02\TECH\Design\Reports\Engineering\100%\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report-100% compiled wAppdx.docx

GEOTECHNICAL ENGINEERING REPORT OXNARD AIRPORT RUNWAY 7-25 AND TAXIWAY CONNECTOR IMPROVEMENTS 2889 WEST 5TH STREET OXNARD, CALIFORNIA MEAD & HUNT, INC. PROJECT NO. 3138400-181115.01

July 10, 2020

Prepared for

Mr. Jeff Leonard, PE Associate Practice Leader Aviation Services Mead & Hunt, Inc.

Prepared by

Earth Systems Pacific 4378 Old Santa Fe Road San Luis Obispo, CA 93401

Earth Systems

4378 Old Santa Fe Road | San Luis Obispo, CA 93401 | Ph: 805.544.3276 | www.earthsystems.com

July 10, 2020

FILE NO.: 302524-001

Mr. Jeff Leonard, PE Associate Practice Leader, Aviation Services Mead & Hunt, Inc. 1360 19th Hole Drive, Suite 200 Windsor, CA 95492-7717

PROJECT: OXNARD AIRPORT RUNWAY 7-25 AND TAXIWAY CONNECTOR IMPROVEMENTS/RECONSTRUCTION 2889 WEST 5TH STREET OXNARD, CALIFORNIA MEAD & HUNT, INC. PROJECT NO. 3138400-181115.01

SUBJECT: Geotechnical Engineering Report - Final

CONTRACT

REFERENCE: Service Work Order No. 1 by Mead & Hunt, Inc., Referencing Proposal to Provide a Geotechnical Engineering Investigation and Recommendations, Oxnard Airport, Runway and Taxiway Connector Rehabilitation / Reconstruction, Oxnard, California, by Earth Systems Pacific, Doc. No. 1804-100.PRP, dated April 26, 2018

Dear Mr. Leonard:

As per the referenced Service Work Order, this geotechnical engineering report has been prepared for use in the design of the Runway 7-25 and Taxiway Connector Improvements Project at Oxnard Airport in Oxnard, California. Boring logs and a boring location map, results of laboratory testing, and conclusions regarding CBR testing, earthwork shrinkage, and subsurface water and soil moisture contents are provided. This final report version incorporates responses to comments received from the client on a draft version issued on February 6, 2019.

We appreciate the opportunity to have provided geotechnical services for this project and look forward to working with you again in the future. If there are any questions concerning this report, please do not hesitate to contact the undersigned.

TABLE OF CONTENTS

	COVER LETTER	ii
1.0	INTRODUCTION	1
2.0	SCOPE OF SERVICES	1
3.0	FIELD INVESTIGATION	2
4.0	LABORATORY INVESTIGATION	3
5.0	GENERAL SUBSURFACE PROFILE	3
6.0	CONCLUSIONS	5
	Existing Pavement Sections and Miscellaneous Aggregate Base	5
	CBR Test Results	5
	Swelling Soils	
	Earthwork Shrinkage	11
	Subsurface Water and Soil Moisture Contents	11
	Soil Erodibility	13
7.0	OBSERVATION AND TESTING	13
8.0	CLOSURE	15
TECHN	NICAL REFERENCES	17

APPENDICES

Appendix A	Figures 1A and 1B – Exploration Location Maps Table 1 - Boring Locations by Latitude and Longitude Boring Log Legend Boring Logs
Appendix B	Laboratory Test Results
Appendix C	 Figures 2A and 2B – Existing Pavement Section Thicknesses Figures 3A and 3B – USCS Soil Types at Subgrade Figures 4A and 4B – CBR Values – 95% Minimum Relative Compaction at Subgrade Figures 5A and 5B – Approximate CBR Values Based on Existing Soil Density and Moisture Content at Subgrade Figures 6A and 6B – Subgrade Soil Moisture Content
Appendix D	Estimates of Earthwork Shrinkage

1.0 INTRODUCTION

This geotechnical engineering report has been completed for the client's use in the development of a preliminary pavement design for Runway 7-25 and Taxiway Connectors A through E at Oxnard Airport in Oxnard, California. Previous investigations of the pavement on the Airport were provided by this firm (ESP 2015) and by Miller Geosciences, Inc. (Miller 2014). Based on those reports, the existing pavement sections are known to consist of varying thicknesses of asphalt concrete (AC) over varying thicknesses of aggregate base (AB). Runway 7-25 and Taxiways A through E are in regular use currently.

In general, this report contains logs of the subsurface conditions encountered in our exploratory borings, the results of laboratory tests, and conclusions regarding CBR testing, earthwork shrinkage, and subsurface water and soil moisture contents. We understand that this report, and the previous investigations, will be used by the client and the owner to determine if rehabilitation or reconstruction of the runway and taxiway connectors will be necessary.

2.0 SCOPE OF SERVICES

The scope of work for this geotechnical engineering report included a general site reconnaissance, subsurface exploration, laboratory testing of soil samples, engineering evaluation of the data collected, and the preparation of this report. The investigation and subsequent recommendations were based on information and base maps provided by the client.

The report and recommendations are intended to be in general accordance with AC 150/5320-6F (FAA 2016), the client's requested work scope, and common geotechnical engineering practice in this area under similar conditions at this time. The tests were performed in general conformance with the standards noted, as modified by common geotechnical engineering practice in this area under similar conditions at this time.

It is our intent that this report be used exclusively by the client to determine if rehabilitation or reconstruction of the runway and taxiway connectors will be necessary. The information may also be used to develop plans for future projects; however, no other specific projects are planned at this time. Application beyond these intents is strictly at the user's risk. As there may be geotechnical issues yet to be resolved, the geotechnical engineer should be retained to provide consultation as the project progresses, to assist in verifying that pertinent geotechnical issues have been addressed and to aid in conformance with the intent of this report. In the event this

Oxnard Airport RWY 7-25 and TWY Connector Improvements Project

report is used to develop project plans, it may also be advantageous to retain the geotechnical engineer to review the grading and drainage plans as they near completion to further aid in conformance of the plans with the intent of this report.

This report does not address issues in the domain of the contractor such as, but not limited to, site safety, excavatability, shoring, temporary slope angles, construction methods, etc. Analysis of site geology and of the soil for corrosive potential, radioisotopes, asbestos (either naturally occurring or in man-made products), lead or mold potential, hydrocarbons, or other chemical properties are beyond the scope of this investigation. Ancillary features beyond the pavement areas covered by this report are also not within our scope and are not addressed.

In the event that there are any changes in the nature of the work scope, or if any assumptions used in the preparation of this report prove to be incorrect, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and the conclusions of this report modified or verified in writing.

3.0 FIELD INVESTIGATION

On October 28 through November 1, 2018, a total of 40 borings were extended on the runways and taxiways within the project area, during night-shift closure periods. The borings were drilled to a maximum depth of 10.0 feet below the existing pavement surfaces with a Mobile Drill rig, Model B-53, equipped with 6-inch outside diameter hollow stem auger and an automatic hammer for sampling. The approximate locations of the borings are shown on the Exploration Location Maps – Figures 1A and 1B, in Appendix A.

The boring locations, which were provided to us by the client, were identified and marked in the field during a site visit with airport staff on October 10, 2018. During the field meeting, the general areas of all requested boring locations were determined by airport staff to be clear of underground utility lines, with only slight adjustments in a few locations made to increase setback distances. A table with the actual boring locations identified by latitude and longitude, as determined using a Verizon Android Smartphone, is also included in Appendix A.

As the borings were drilled, soil samples were obtained using a 3-inch outside diameter ring-lined barrel sampler (ASTM D 3550-17 with shoe similar to D 2937-17) at approximate subgrade elevation. Standard penetration tests (SPT) using a 2-inch outside diameter split-spoon sampler were also performed in the borings (ASTM D 1586-11) from 5 to 6.5 feet and from 8.5 to 10.0 feet in each boring. Bulk samples were secured from the auger cuttings.

Oxnard Airport

RWY 7-25 and TWY Connector Improvements Project

The pavement sections at each boring location were noted by direct measurement of the material layers in the boring. The soils underlying the pavement sections were initially classified and logged in general accordance with the Unified Soils Classification System (ASTM D 2488-17). Final classifications of the soils in accordance with the Unified Soils Classification System (ASTM D 2487-17) were made following completion of laboratory testing. Copies of the boring logs and a boring log legend can also be found in Appendix A. In reviewing the boring logs and legend, the reader should recognize that the legend is intended as a guideline only, and there are a number of conditions that may influence the soil characteristics as observed during drilling. These include, but are not limited to, cementation, variations in soil moisture, presence of groundwater, and other factors. Consequently, the logger must exercise judgment in interpreting soil characteristics, possibly resulting in soils descriptions that vary somewhat from the legend. Following completion of drilling, the borings were backfilled with cement-treated auger spoils and gravel, and then patched at the surface with cold-mix AC (Instant Road Repair by International Roadway Research).

4.0 LABORATORY INVESTIGATION

In situ moisture content and unit dry weight (ASTM D 2937-17, as modified for ring liners) were determined for the ring samples. Fourteen bulk samples were tested for the following: maximum density and optimum moisture (ASTM D 1557-12, modified), particle size distribution (ASTM D 422-63/07; D 1140-17), plasticity index (ASTM D 4318-17), and CBR (ASTM D 1883-16, for a range of moisture contents, with ASTM D 1557-12 as the reference standard for maximum density). Two additional bulk samples were tested for the same series of parameters, except that CBR testing was completed with the soils lime treated at 3, 5 and 7 percent by dry weight of soil at optimum moisture content only. One additional sample was tested for plasticity index (ASTM D 4318-17), and three additional samples were tested for particle size distribution (ASTM D 4318-17), and three additional samples were tested for the laboratory test results.

5.0 GENERAL SUBSURFACE PROFILE

Variations in the thicknesses of the existing pavement sections were observed throughout the borings drilled in the project area.

The AC thicknesses found in the borings on the runway varied from 3 inches in Borings 4, 21 and 28, to 6.5 inches in Boring 8. The majority of the thicknesses measured in the other borings on the runway varied from 4 to 5.5 inches. The miscellaneous aggregate base (mAB) supporting the

Oxnard Airport RWY 7-25 and TWY Connector Improvements Project

AC on the runway varied from 8 inches in Borings 8 and 10, to as much as 17 inches found in Boring 28. The mAB on the runway consisted of clayey sand with gravel, silty sand with gravel, and silty gravel with sand.

On the connector taxiways, the borings encountered more uniform AC thicknesses of 4 to 5.5 inches, with one section (Boring 40) at 6 inches. The mAB thicknesses ranged from 3.5 inches in Boring 32, to 12 inches in Borings 37 and 38. The mAB on the connector taxiways consisted of silty sand with gravel, and silty gravel with sand.

The pavement sections found in each of the borings are noted on Figures 2A and 2B - Existing Pavement Section Thicknesses, in Appendix C.

Below the pavement sections, thin (4 to 8 inches) layers of loose to medium dense poorly graded sand fill were found, generally on the west side of the project area, in Borings 1 through 8, 31 through 34, and 36. Below the poorly graded sand, and below the pavement sections in all other borings, the underlying soil was fill consisting of sandy lean clay, silty sand and lean clay to depths ranging from 2 to 5 feet below the existing pavement surfaces. Variable amounts of gravel were noted in the fill. The silty sand fill in Boring 33 contained traces of AC fragments; in Boring 40 the silty sand fill was mixed with sandy lean clay. In general, the silty sands were medium dense, and the clays were medium stiff to very stiff.

Alluvium was found below the fill in all of the borings, to the maximum depth explored of 10 feet below the existing pavement surfaces. The alluvium consisted of very soft to medium stiff sandy lean clay, silt, and lean clay; a layer of loose silty sand was also found in the alluvium in Boring 25.

The soils were described during drilling as being slightly moist to very moist. Subsurface water was not encountered in any of the borings, to the maximum depth explored of 10 feet below the existing pavement surface. However, caliche deposits, a residual mineral in the soil indicating the past presence of subsurface water, were found at various depths in 32 of the 40 borings drilled for this project.

Please refer to the logs in Appendix A for a more complete description of the subsurface conditions found in the borings.

Figures 3A and 3B – USCS Soil Types at Subgrade, in Appendix C, is a summary of the soil types found at or within 1.5 feet of subgrade (i.e., below the pavement sections) in the borings. The poorly graded sand layers found directly below the pavement sections in Borings 1 through 8, 31 through 34, and 36, are also indicated on Figures 3A and 3B.

6.0 CONCLUSIONS

Existing Pavement Sections and Miscellaneous Aggregate Base

The existing pavement sections found in the borings on the runway were variable, with the thicknesses of the AC ranging from 3 inches to 6.5 inches. The miscellaneous aggregate base (mAB) supporting the AC on the runway varied from 8 inches to 17 inches; the thicker sections of mAB appeared to be more on the eastern end of the runway. On the connector taxiways, the borings encountered AC thicknesses of 4 to 6 inches, with the underlying mAB ranging from 3.5 inches to 12 inches.

The 4 to 8-inch layers of poorly graded sand found below Borings 1 through 8, 31 through 34, and 36, appeared to be leveling courses, and it is unclear if they were considered to be part of the overall pavement section when constructed. The material itself appeared to be beach sand.

The mAB found below the AC in all borings was not uniform and varied from clayey sand with gravel to silty sand with gravel. Comparison of the results (Appendix B) of grain size distribution tests completed on the mAB with gradation specifications for FAA P-209 material and Caltrans Class 2 aggregate base indicate that none of the four samples tested appeared to meet the gradation requirements. Therefore, for the purposes of this report, the material was classified as "miscellaneous aggregate base (mAB)."

CBR Test Results

The laboratory test results indicate variability of the CBR values of the soils based on their USCS type and on their moisture contents. The CBR test results have been summarized on Figures 4A, 4B, 5A and 5B in Appendix C, and the following paragraphs are a discussion regarding use of the data on the maps. Determinations of the actual CBR values and elastic modulus (E) values to be used in either the design for reconstruction of pavement, or the evaluation for rehabilitation of existing pavement, are to be made by the project engineer.

Per AC 150/5320-6F (FAA 2016), Chapter 2.5.3, for flexible pavements, the elastic modulus E can be estimated from CBR test results using the following correlation: E (psi) = 1500 x CBR.

Reconstructed Pavement over Existing Soils

In general, the laboratory CBR test results indicate variations in the strengths of the soils tested based on their density and their moisture content. Variations in the CBR values were noted when moisture contents were above or below optimum moisture content for most of the samples. The summary of CBR values provided in the following paragraph is based on the assumption that the subgrade soils will be recompacted within a moisture conditioned range extending from 2 percent below optimum moisture content to 2 percent above optimum moisture content. If the subgrade soils are not maintained within this range, a reduction in the CBR value will occur. Assuming the CBR values provided in this report for pavement section reconstruction will be utilized for design, the project plans should fully indicate the relatively narrow moisture content range as a specification requirement, to allow the contractor to plan earthwork operations accordingly. Provisions should also be taken (e.g., proper surface drainage and flowlines away from edges of pavement, regular maintenance of the pavement surface to fill any cracks that develop, etc.) to ensure that the moisture contents of the subgrade soils remain within the design range for the design life of the pavement sections. As noted in the "Subsurface Water and Soil Moisture Contents" Section below, edge drains should be considered to help maintain soil moisture contents following construction.

For fully reconstructed conditions, where the existing pavement sections will be removed and the underlying soils can be moisture conditioned and recompacted, the CBR values of the subgrade soils can be increased in some areas from their *in situ* conditions. However, where the existing conditions are already very well compacted, a *decrease* in the effective CBR value at that location could occur with moisture conditioning and recompaction to a lesser value than the existing conditions. The most important soil condition achieved with complete reconstruction will be uniformity of subgrade moisture and density. Per FAA AC 150/5320-6F, the degree of relative compaction required at subgrade for any pavement areas where complete reconstruction design) is based on the cohesive/non-cohesive classification of the subgrade soils. With the exception of the silty sands found at or near subgrade in Borings 5, 6, 24, 28, 33, 35, 39 and 40, the soils encountered at the site are considered cohesive (plasticity index of 3 or greater, per FAA AC 150/5320-6F, Chapter 3.9.3). Also per FAA AC 150/5320-6F, cohesive soils are required to be compacted at subgrade to a minimum of 95 percent of maximum dry density. Based on discussions with the client during development of the laboratory data, given the

scattered and inconsistent nature of the silty sands, it was decided to consider all of the subgrade soils on the site as being cohesive, with a compaction standard of 95 percent of maximum dry density.

Figures 4A and 4B in Appendix C are summaries of the CBR values expected at the boring locations, based on the results of our laboratory testing and assuming the soils are compacted to a minimum of 95 percent of maximum dry density within 2 percent of optimum moisture content. After discussing the design parameters and construction considerations with the client, and reviewing the laboratory CBR test results, it is our opinion that the following "approximate average" CBR values should be used in the design of reconstructed pavements for the project:

- Runway 7-25, from Borings 11/12 to Borings 21-22 (see Figures 4A and 4B in Appendix C)
 CBR = 5
- All other portions of Runway 7-25 and all Taxiway connectors CBR = 8

Reconstructed Pavement over Lime Treated Soil

To provide better subgrade CBR values and to reduce the design section where pavement will be fully reconstructed, lime treatment can be utilized. The existing pavement sections (asphalt concrete - AC and miscellaneous aggregate base - mAB) can also be pulverized/milled in place and mixed with the subgrade, to reduce or even eliminate off-haul and disposal from demolition, and to provide a stronger subgrade material than the native soils. Milled pavement section material should be thoroughly mixed with the native soils using disks or other suitable equipment, prior to shaping to provide the design crowned subgrade section. Final mixing of the materials after shaping will be completed during the lime treatment process by pugmills. Lime treatment of the native soils mixed with milled AC/mAB material will likely provide a superior subgrade material for support of new pavement, when compared to untreated native soils, or to lime treated native soils without milled AC/mAB.

Samples of the subgrade soils only (without milled AC/mAB) from Boring 5 and Boring 27 were tested for CBR value at optimum moisture content only, with lime treatment percentages of 3, 5 and 7 percent by dry weight of soil. Based on the laboratory test results, the approximate CBR values provided in Tables 1 and 2 were determined for the samples compacted to a minimum of 95 percent of maximum dry density. If utilized, the lime treated soil layer should be 12 to 16 inches thick. A thicker section may be appropriate for areas of the site where in situ soil moisture contents are well above optimum and construction equipment traffic may cause instability. The actual thickness of lime treated soil to be utilized should be determined by the engineer.

Oxnard Airport

7%

RWY 7-25 and TWY Connector Improvements Project

62

If the existing pavement sections are milled and stockpiled for later re-use as mAB, it is anticipated that some or all of the poorly graded sand layers found in Borings 1 through 8, 31 through 34 and 36 will be removed in the process. To maintain uniformity of the subgrade soils for lime treatment, any poorly graded and/or mAB layers remaining after the milling process should be removed from the lime treatment area and properly disposed off site or reused where acceptable on site. Alternately, if the quantity of poorly graded sand and/or mAB in the lime treatment zone is significant, the additive can be switched from lime to cement. The need to make this switch should be determined based on the conditions exposed at the time of construction.

Lime Treatment	Max. Density, pcf	95% Max. Dens., pcf	Approximate CBR
3 %	119.0	113.0	52
5 %	116.6	110.8	72

Table 1 - CBR #3 – Boring 5 at 2.0 to 4.0 Feet – Dark Brown Silty Sand – Lime Treated

114.9

109.2

Lime Treatment	Max. Density, pcf	95% Max. Dens., pcf	Approximate CBR
3 %	115.6	109.8	37
5 %	113.3	107.6	52
7 %	114.0	108.3	62

CBR Values for Existing Miscellaneous Aggregate Base (mAB)

Samples of the miscellaneous aggregate base (mAB) from four of the borings were tested for CBR in the laboratory. As discussed with the client, considering its variability, it was decided that the mAB material was not consistent enough to be able to assume with any certainty that it would be capable of being compacted to 100 percent of maximum dry density with a reasonable amount of effort. The approximate CBR values in Table 3 were determined for the four samples of mAB material compacted to a minimum of 95 percent of maximum dry density within two percent of optimum moisture content. Per AC 150/5320-6F (FAA 2016), Chapter 2.5.6.3, a *maximum* elastic modulus (E) value of 50,000 psi (CBR = 33) is recommended for the mAB material.

CBR No.	Soil Type (USCS)	Found in Borings	CBR
4	Brown Clayey Sand	1 through 8	12
	with Gravel (SC)		
15	Brown Clayey Sand	17 through 24	27
	with Gravel (SC)		
16	Brown Silty Gravel	25 through 30	50
	with Sand (GM)		
17	Brown Silty Sand	9 through 16, and 31	50
	with Gravel (SM)	through 40	

Rehabilitation of Existing Pavements

Figures 5A and 5B in Appendix C show the estimated CBR values of the subgrade soils at each boring location, based on their existing density and moisture contents, and on the results of the laboratory CBR tests. Note that in 26 of the 40 borings, the existing soil moisture contents and/or densities were beyond the range of the data from the laboratory CBR tests; those locations are marked on the map with an asterisk. Where the CBR information appeared to follow a trend line beyond the data range, a rough estimate of the CBR value was provided. Where the soil moisture contents and/or density values were well out of the data range or did not appear to follow a trend line, no CBR value was provided. After reviewing the design parameters and construction considerations with the client, reviewing the laboratory CBR test results, and considering the variability of the in situ moisture and site density test results, it is our opinion that a CBR value of only 1 or 2 should be used for the subgrade in its existing condition when evaluating the potential for rehabilitation of the existing pavement.

As noted in the "Subsurface Water and Soil Moisture Contents" Section below, edge drains should be considered to help maintain soil moisture contents following construction.

Swelling Soils

AC 150/5320-6F (FAA 2016) Chapter 3.10.1 describes the effects that swelling soils have on airport pavements, and recommends various treatments (removal and replacement, stabilization, modified compaction efforts and adequate drainage) to reduce the potential for damage to pavements due to swelling soils.

Chapter 3.10.2 (FAA 2016) indicates swelling soils "usually have liquid limits above 40 and plasticity indexes above 25." Only one soil type, the brown sandy fat clay (CH) found in Boring 39 from 2.0 to 5.0 feet, meets these criteria; the test results for this material were a liquid limit of 55 and a plasticity index of 40.

Chapter 3.10.3 (FAA 2016) indicates soils with a swell of greater than 3 percent when tested for CBR require treatment to reduce the potential for damage to pavements. The following samples exhibited a swell of greater than 3 percent when tested for CBR value:

- CBR #7 Boring 23 from 3.5 to 5.0 feet. Expansion values ranged from 3.0 to 5.8 percent after soaking for the samples compacted at 3 percent below optimum moisture content only. Samples compacted at optimum and at 3 percent above optimum exhibited expansion values of 0.5 percent or less after soaking.
- CBR #14 Boring 39 from 2.0 to 5.0 feet. Expansion values ranged from 3.3 to 5.3 percent after soaking for the samples compacted at 3 percent below optimum moisture content only. One sample compacted at optimum moisture content experienced 3.1 percent expansion after soaking; the other two samples compacted at optimum moisture content exhibited expansion values of 2.0 percent or less. All three samples compacted at 3 percent above optimum exhibited expansion values of 2.2 percent or less after soaking.

Chapter 3.10.1 (FAA 2016) states "Local experience and judgment should be applied in dealing with swelling soils to achieve the best results." It is our understanding that the pavement at Oxnard Airport does not exhibit pervasive evidence of damage due to swelling soils, i.e., significant edge cracking or random surface unevenness. In our opinion, the material found in Boring 23 (CBR #7) from 3.5 to 5.0 feet does not exhibit enough of the characteristics to be considered a swelling soil that should be accounted for in the design process. However, the fat clay soil found in Boring 39 from 2.0 to 5.0 feet *is* considered a swelling soil, and it should be considered in the design process. This material was only found in one boring, therefore its presence on the site is likely limited.

If the engineer elects to lime treat all of the native soils for a reconstruction process, per Table 3-1 "Recommended Treatment of Swelling Soils" (FAA 2016), the lime treatment will neutralize the swelling soils, and no additional action would be necessary. If reconstruction is planned *without* lime treatment, the most reasonable course of action, again per Table 3-1 "Recommended Treatment of Swelling Soils" (FAA 2016), would probably be to remove the fat clay soils to a depth of at least 36 inches below the pavement section and replace with non-swelling soil. If the

existing pavements are rehabilitated without reconstruction, the only option available to reduce the potential for damage would be to provide adequate surface and subsurface drainage, as described in the "Subsurface Water and Soil Moisture Contents" Section below, where the fat clay soils are present in the subgrade.

Earthwork Shrinkage

Soil volume loss, or "shrinkage", during earthwork can be attributed to three categories; soil loss due to stripping or demolition of existing improvements, subsidence of the underlying soils due to compaction, and shrinkage of fill soil as it is placed and compacted. These factors are partly due to the soil characteristics, but largely due to depths of cuts and fills, stripping techniques, type and weight of earthwork equipment, traffic pattern of earthwork equipment, and soil moisture at the time of grading.

In paved areas that are to be reconstructed, removal of distinct AC and AB layers can result in less loss than from removal of vegetation in unpaved areas, if any. The amount of soil loss that will occur is largely dependent upon how careful the contractor is in stripping and demolition/removal operations.

Subsidence of the site due to compaction of the soils below a fill area also occurs. Subsidence due to compaction is likely to be in the range of 0.1 to 0.2 feet. The main zone of subsidence is typically the upper two to three feet. Deeper subsidence is not expected as earthwork operations for pavement reconstruction are expected to be limited to the upper 1 to 2 feet in the project area.

To estimate shrinkage of the subgrade, *in situ* soil density data from ring samples taken in the borings at approximate subgrade elevation were analyzed. Appendix D contains a summary of the existing relative compaction at each depth where a ring sample was secured, as well as calculated shrinkage assuming final relative compaction values ranging from 95 to 100 percent.

As loss, subsidence, and shrinkage are only partly due to the soil characteristics, and are largely influenced by the earthwork equipment, earthwork methods, and soil moisture, these factors cannot be precisely estimated.

Subsurface Water and Soil Moisture Contents

Subsurface water was not encountered in any of the borings to the maximum depth drilled of 10 feet below the existing pavement surface. However, caliche deposits, a residual mineral in the

soil indicating the past presence of subsurface water, were found at various depths in 32 of the 40 borings drilled for this project. Caliche is an indicator that significant soil moisture contents have been present in the past. If soil moisture contents are well above optimum in pavement areas to be reconstructed, the soils could become unstable under equipment traffic. Unstable conditions hinder compaction efforts and are not acceptable to support fill or pavement section placement. All grading areas should be firm and unyielding following compaction operations and prior to placement of fill, aggregate base or pavement.

Depending on the time of year that construction operations take place, the most effective methods to deal with unstable conditions due to high soil moisture could be scarification and aeration, or the use of geotextile stabilization fabrics. Scarification and aeration may only be possible if the weather conditions are clear and if the project schedule permits.

If the project schedule will not allow drying of the soil naturally, stabilization fabric could be utilized. Additional excavation below subgrade may also be needed before the stabilization fabric is placed; the depth of overexcavation should be determined by the geotechnical engineer based on conditions exposed at the time of construction. After all excavations are complete, and prior to placement of the geotextiles, the exposed surfaces are typically back-dragged to a smooth condition to the degree practicable with light earthwork equipment. Geotextile stabilization fabric (Mirafi RS380i or similar material depending on the degree of instability) is typically placed in the excavated area and extended up the sidewalls of the excavation to within 2 inches of the bottom of the AC layer. Stabilization fabrics are rolled out along the long dimension of the reconstruction area (not perpendicular to it), and are stretched, overlapped and held in place according to the manufacturer's recommendations. Recycled subbase and/or imported aggregate base, per the overall pavement section design, is placed over the fabric in thin, moisture-conditioned lifts and compacted. Recycled subbase and/or aggregate base is placed by end-dumping on the fabric and spreading ahead of equipment; equipment traffic is typically not allowed to travel directly over the fabric. Initial lifts of subbase/base are spread and compacted by rubber-tired equipment; subsequent lifts are compacted using sheepsfoot and/or steel-drum equipment. Compaction equipment is usually operated in static mode only until base grade is reached, to reduce the potential for any free water in the underlying soils to be drawn through the fabric and into the subbase or aggregate base.

If it appears that stable conditions will not be created at base grade after the use of geotextiles, a layer of geogrid (Tensar TriAx TX-7 or similar material) can be placed according to the

manufacturer's recommendations as additional reinforcement at the approximate mid-depth of the subbase/aggregate base layer. Often sufficient material may not be in place over the geotextile stabilization fabric at mid-depth of the design subbase/aggregate base layer to fully mobilize its strength characteristics and to determine if geogrid will be needed, therefore it may be necessary to construct a full-scale test strip of the pavement section, with and without geogrid reinforcement. This test strip will give an indication as to whether or not geogrids will be required in any reconstruction areas.

Figures 6A and 6B – Subgrade Soil Moisture Content in Appendix C show the soil moisture contents at the time of our field exploration, and percentage above (or below) optimum moisture content. These data show that in the majority of the boring locations, soil moisture contents were above optimum moisture content, with some in excess of 10 percent above optimum. As noted in the "CBR Test Results" Section of this report, the CBR values decrease significantly with increasing soil moisture contents. To reduce the potential for accumulated moisture in the subgrade and the subsequent loss of soil strength (CBR value), positive surface drainage away from all paved areas must be provided. Edge drains adjacent to the pavement areas are also recommended. The drains could consist of conventional geotextile-wrapped and gravel-filled trenches with perforated collection pipes, or prefabricated panel-type drainage systems that are placed in narrow trenches. The 3- to 4-inch diameter perforated collection pipes in conventional trenches have the advantage of being able to be fitted with cleanouts for system maintenance; however, this could be outweighed by the relatively low cost of a thin panel drain system, as gravel drains require excavation of wider trenches, trench spoil disposal, and gravel placement. The actual type of system to be utilized, if any, should be determined by the engineer. The drains should be placed, wherever practicable, to dewater the upper 2 to 3 feet of soil below the pavement sections.

Soil Erodibility

The site soils are considered to be erodible. It is essential that all surface drainage be controlled and directed to appropriate discharge points, and that surface soils, particularly those disturbed during construction, are stabilized by vegetation or other means during and following construction.

7.0 OBSERVATION AND TESTING

1. It must be recognized that the recommendations contained in this report are based on a limited number of borings and rely on continuity of the subsurface conditions

Oxnard Airport

encountered. Therefore, the geotechnical engineer should be retained to provide consultation during the design phase, to review plans as they near completion, to interpret this report during construction, and to provide construction monitoring in the form of testing and observation.

- 2. At a minimum, the following should be provided by the geotechnical engineer during construction:
 - Professional observation during grading
 - Oversight of special inspection during grading
- 3. Special inspection of grading should be provided as per the requirements of the FAA or Section 1705.6 and Table 1705.6 of the CBC; the soils special inspector should be under the direction of the geotechnical engineer. Subject to approval by the building official or other jurisdiction, special inspection requirements should be addressed by the geotechnical engineer during the preconstruction meeting (see below) prior to the start of grading operations.

At a minimum, the following items should be inspected and/or tested by the special inspector:

- Stripping and clearing of vegetation and existing pavement where planned for removal
- Excavations to subgrade in any pavement reconstruction areas, and corrective operations (scarification/aeration or placement of geotextile stabilization fabric) in any unstable areas
- Excavations to subgrade in any pavement reconstruction areas and scarification, moisture conditioning, and recompaction in stable areas
- Fill, milled/pulverized AC (if any) and imported aggregate base quality, placement, moisture conditioning, and compaction
- Utility trench backfill
- 4. A program of quality control should be developed prior to beginning grading. The contractor or project manager should determine any additional inspection items required by the architect/engineer or the governing jurisdiction.

- 5. Locations and frequency of compaction tests should be as per the recommendation of the geotechnical engineer at the time of construction. The recommended test location and frequency may be subject to modification by the geotechnical engineer, based upon soil and moisture conditions encountered, size and type of equipment used by the contractor, the general trend of the results of compaction tests, or other factors.
- 6. A preconstruction conference among the owner, the geotechnical engineer, the governing agency, the special inspector, the project inspector, the architect/engineer, and contractors is recommended to discuss planned construction procedures and quality control requirements.
- 7. The geotechnical engineer should be notified at least 48 hours prior to beginning construction operations. If Earth Systems Pacific is not retained to provide construction observation and testing services, it shall not be responsible for the interpretation of the information by others or any consequences arising therefrom.

8.0 CLOSURE

Our intent was to perform the investigation in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the locality of this project and under similar conditions. No representation, warranty, or guarantee is either expressed or implied. This report is intended for the exclusive use by the client as discussed in the "Scope of Services" section. Application beyond the stated intent is strictly at the user's risk.

This report is valid for conditions as they exist at this time for the type of project described herein. The conclusions and recommendations contained in this report could be rendered invalid, either in whole or in part, due to changes in building codes, FAA regulations, standards of geotechnical or construction practice, changes in physical conditions, or the broadening of knowledge.

If changes with respect to development type or location become necessary, if items not addressed in this report are incorporated into plans, or if any of the assumptions used in the preparation of this report are not correct, this firm shall be notified for modifications to this report. Any items not specifically addressed in this report should comply with the FAA, the CBC and/or the requirements of the governing jurisdiction.

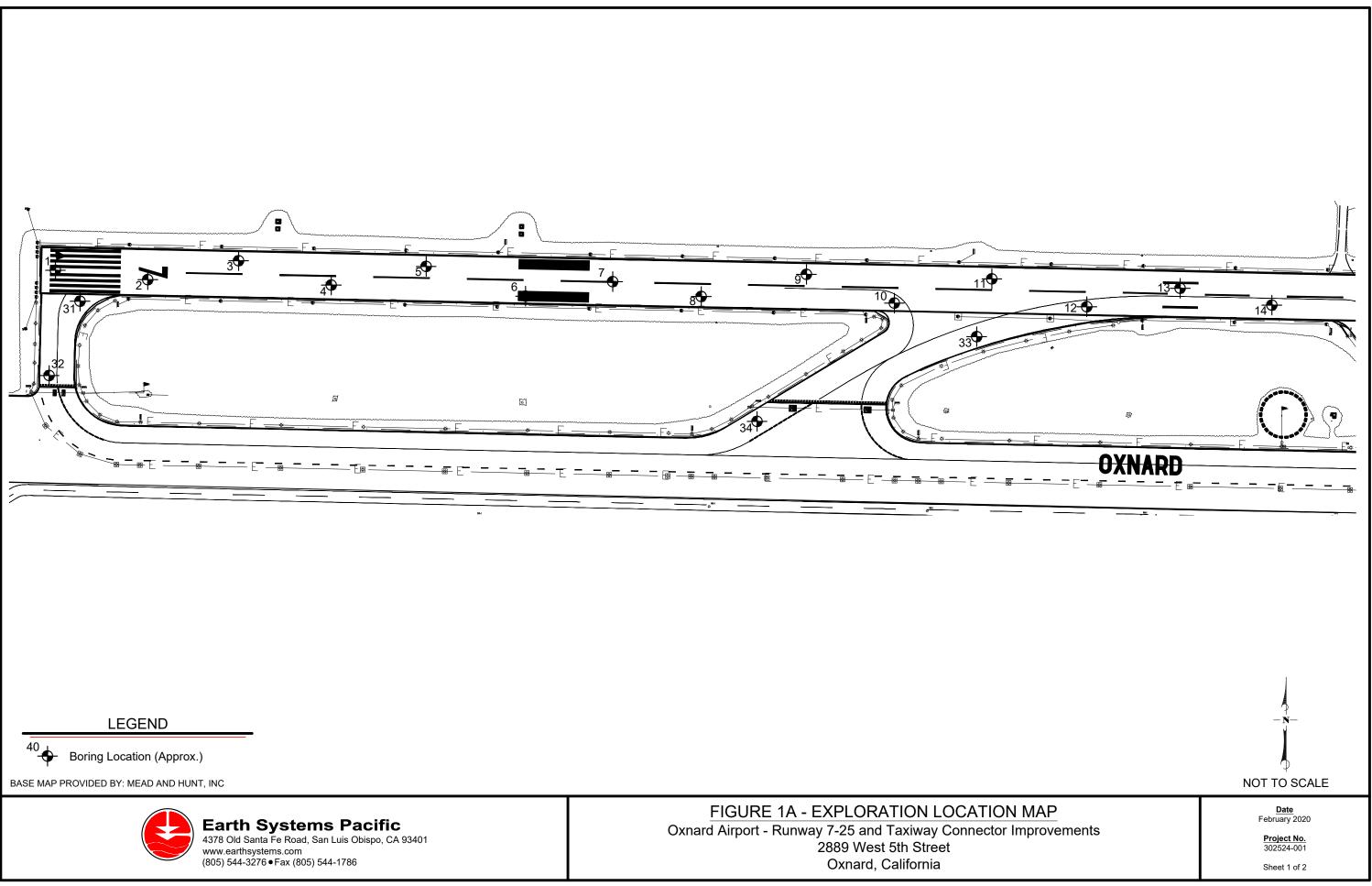
The preliminary recommendations of this report are based upon the geotechnical conditions encountered at the site and may be augmented by additional requirements of the engineer, or

by additional recommendations provided by this firm based on conditions exposed at the time of construction.

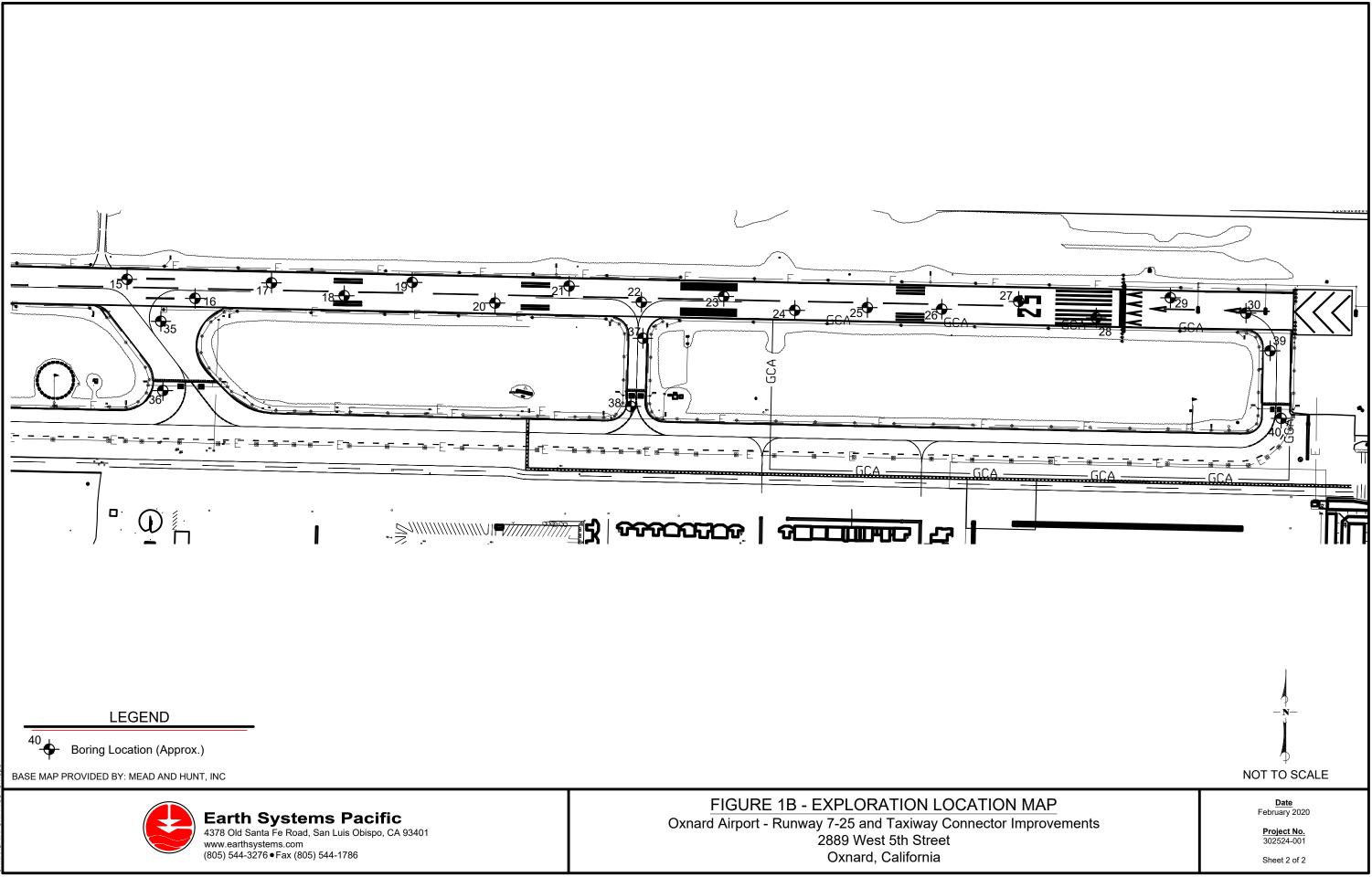
This document, the data, conclusions, and recommendations contained herein are the property of Earth Systems Pacific. This report shall be used in its entirety, with no individual sections reproduced or used out of context. Copies may be made only by Earth Systems Pacific, the client, and the client's authorized agents for use exclusively on the subject project. Any other use is subject to federal copyright laws and the written approval of Earth Systems Pacific.

Thank you for this opportunity to have been of service. If you have any questions, please feel free to contact this office at your convenience.

End of Text.


TECHNICAL REFERENCES

- ESP. (Earth Systems Pacific). December 31, 2015. Geotechnical Engineering Report, Taxiway and Apron PCN Calculations, Oxnard Airport, Oxnard, California. Mead & Hunt, Inc., Project No. 3138400-150628.01
- FAA. (U.S. Department of Transportation Federal Aviation Administration). November 10, 2016.Advisory Circular (AC) 150/5320-6F. Airport Pavement Design and Evaluation.
- Miller. (Miller Geosciences, Inc.). August 28, 2014. Preliminary Geotechnical Explorations, Proposed Improvements, Oxnard Airport Runway, 2889 West 5th Street, Oxnard, California.


APPENDIX A

Figures 1a and 1b – Exploration Location Maps Table 1 - Boring Locations by Latitude and Longitude Boring Log Legend Boring Logs

INTENTIONALLY BLANK

INTENTIONALLY BLANK

INTENTIONALLY BLANK

OXNARD AIRPORT 302524-001 RUNWAY 7-25 AND TAXIWAY CONNECTOR IMPROVEMENTS

BORING LOCATIONS BY LATITUDE AND LONGITUDE

1 34.20089 -119.21698 2 34.20090 -119.21639 3 34.20094 -119.21639 4 34.20078 -119.21567 4 34.20078 -119.21501 5 34.20091 -119.21373 7 34.20087 -119.21373 7 34.20087 -119.21373 7 34.20087 -119.21373 9 34.20088 -119.21170 10 34.20071 -119.21425 9 34.20088 -119.21170 11 34.20071 -119.21107 11 34.20075 -119.2040 12 34.20075 -119.20971 13 34.20086 -119.2098 14 34.20677 -119.20847 15 34.20087 -119.20775 16 34.20081 -119.20710 17 34.20082 -119.20576 19 34.20079 -119.20576 19 34.20077 -119.20449 21 34.20075 -119.20377 22 34.20075 -119.20392 23 34.20076 -119.2016 26 34.20076 -119.2016 27 34.20081 -119.1983 28 34.20075 -119.20847 30 34.20075 -119.19847 30 34.20075 -119.19784 31 34.20070 -119.21687 32 34.20075 -119.21054	Boring No.	Latitude	Longitude
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
3 $34,20094$ $-119,21567$ 4 $34,20078$ $-119,21501$ 5 $34,20078$ $-119,21501$ 6 $34,20079$ $-119,21373$ 7 $34,20087$ $-119,21373$ 7 $34,20087$ $-119,21302$ 8 $34,20077$ $-119,21245$ 9 $34,20088$ $-119,21170$ 10 $34,20071$ $-119,21107$ 11 $34,20075$ $-119,21040$ 12 $34,20075$ $-119,20971$ 13 $34,20086$ $-119,20908$ 14 $34,20677$ $-119,20775$ 16 $34,20087$ $-119,20775$ 16 $34,20082$ $-119,20775$ 16 $34,20079$ $-119,20776$ 19 $34,20079$ $-119,20576$ 19 $34,20077$ $-119,20377$ 22 $34,20077$ $-119,20377$ 23 $34,20076$ $-119,20327$ 24 $34,20074$ $-119,20327$ 25 $34,20076$ $-119,20182$ 26 $34,20076$ $-119,20182$ 27 $34,20081$ $-119,20983$ 28 $34,20072$ $-119,19983$ 28 $34,20075$ $-119,19983$ 29 $34,20075$ $-119,199847$ 30 $34,20075$ $-119,21687$ 32 $34,20026$ $-119,21054$			
4 34.20078 -119.21501 5 34.20091 -119.21373 7 34.20087 -119.21373 7 34.20087 -119.21373 7 34.20087 -119.21373 7 34.20087 -119.21302 8 34.20077 -119.21245 9 34.20088 -119.21170 10 34.20071 -119.21107 11 34.20092 -119.21040 12 34.20075 -119.20971 13 34.20086 -119.20988 14 34.20077 -119.20847 15 34.20087 -119.2075 16 34.20081 -119.20710 17 34.20082 -119.20640 18 34.20079 -119.20576 19 34.20079 -119.20576 19 34.20077 -119.20392 21 34.20087 -119.20377 22 34.20075 -119.20182 23 34.20076 -119.20182 24 34.20076 -119.20182 25 34.20076 -119.20182 26 34.20076 -119.20149 27 34.20082 -119.20182 28 34.20075 -119.2049 29 34.20075 -119.19983 28 34.20075 -119.199847 30 34.20075 -119.19784 31 34.20076 -119.21687 32 34.20058 -119.21054			
5 34.20091 -119.21436 6 34.20079 -119.21373 7 34.20087 -119.21373 7 34.20087 -119.21302 8 34.20077 -119.21245 9 34.20088 -119.21170 10 34.20071 -119.21107 11 34.20092 -119.21040 12 34.20075 -119.20971 13 34.20086 -119.209847 14 34.20677 -119.20847 15 34.20087 -119.2075 16 34.20081 -119.20710 17 34.20082 -119.20640 18 34.20079 -119.20576 19 34.20079 -119.20576 20 34.20077 -119.20392 21 34.20075 -119.20377 22 34.20075 -119.20182 23 34.20076 -119.20182 24 34.20076 -119.20182 25 34.20076 -119.20146 26 34.20072 -119.2049 27 34.20082 -119.2049 28 34.20075 -119.2049 29 34.20075 -119.19983 28 34.20075 -119.199847 30 34.20075 -119.19784 31 34.20026 -119.21054			
6 34.20079 -119.21373 7 34.20087 -119.21302 8 34.20077 -119.21302 9 34.20088 -119.21170 10 34.20071 -119.21107 11 34.20092 -119.21040 12 34.20075 -119.20971 13 34.20086 -119.20971 13 34.20086 -119.20908 14 34.20677 -119.20847 15 34.20087 -119.20775 16 34.20081 -119.20710 17 34.20082 -119.20640 18 34.20079 -119.20576 19 34.20091 -119.20576 20 34.20077 -119.20377 22 34.20075 -119.20377 23 34.20084 -119.20182 24 34.20076 -119.2016 26 34.20076 -119.2016 26 34.20076 -119.2016 27 34.20081 -119.19983 28 34.20072 -119.19984 31 34.20075 -119.19784 31 34.20076 -119.21054			
7 34.20087 -119.21302 8 34.20077 -119.21245 9 34.20088 -119.21170 10 34.20071 -119.21107 11 34.20092 -119.21040 12 34.20075 -119.20971 13 34.20086 -119.2098 14 34.20677 -119.20847 15 34.20087 -119.20775 16 34.20087 -119.20775 16 34.20082 -119.20640 18 34.20079 -119.20576 19 34.20091 -119.20576 19 34.20077 -119.20377 22 34.20075 -119.20377 23 34.20074 -119.20182 24 34.20074 -119.20182 25 34.20076 -119.20116 26 34.20072 -119.19983 28 34.20072 -119.199847 30 34.20075 -119.19847 31 34.20026 -119.21054			
8 34.20077 -119.21245 9 34.20088 -119.21170 10 34.20071 -119.21107 11 34.20092 -119.21040 12 34.20075 -119.20971 13 34.20086 -119.20908 14 34.20087 -119.20847 15 34.20087 -119.20710 16 34.20081 -119.20710 17 34.20082 -119.20640 18 34.20079 -119.20576 19 34.20079 -119.20576 20 34.20077 -119.20449 21 34.20087 -119.20377 22 34.20075 -119.20377 23 34.20074 -119.20392 23 34.20076 -119.20182 25 34.20076 -119.20182 25 34.20076 -119.2016 26 34.20076 -119.2016 26 34.20072 -119.19983 28 34.20075 -119.19984			
934.20088-119.211701034.20071-119.211071134.20092-119.210401234.20075-119.209711334.20086-119.209081434.20677-119.208471534.20087-119.207751634.20081-119.207101734.20082-119.205761934.20091-119.205761934.20091-119.205762034.20077-119.204492134.20087-119.203772234.20075-119.203722334.20074-119.201822434.20076-119.20162534.20076-119.20162634.20076-119.201492734.20081-119.201492734.20082-119.199832834.20072-119.199843034.20075-119.1997843134.20070-119.216873234.20076-119.217003334.20058-119.21054			
10 34.20071 -119.21107 11 34.20092 -119.21040 12 34.20075 -119.20971 13 34.20086 -119.20908 14 34.20677 -119.20847 15 34.20087 -119.20775 16 34.20081 -119.20710 17 34.20082 -119.20640 18 34.20091 -119.20576 19 34.20091 -119.20576 20 34.20077 -119.20449 21 34.20087 -119.20377 22 34.20075 -119.20392 23 34.20074 -119.20182 24 34.20074 -119.20182 25 34.20076 -119.20149 27 34.20081 -119.19983 28 34.20076 -119.19983 29 34.20075 -119.19984 31 34.20070 -119.19784 31 34.20026 -119.21054			
11 34.20092 -119.21040 12 34.20075 -119.20971 13 34.20086 -119.20908 14 34.20677 -119.20847 15 34.20087 -119.20775 16 34.20081 -119.20710 17 34.20082 -119.20640 18 34.20079 -119.20576 19 34.20091 -119.20576 20 34.20077 -119.20449 21 34.20087 -119.20377 22 34.20075 -119.20377 23 34.20074 -119.20182 24 34.20076 -119.20182 25 34.20076 -119.20149 27 34.20081 -119.19983 28 34.20072 -119.19983 29 34.20075 -119.19984 31 34.20070 -119.21687 32 34.20026 -119.21054			
12 34.20075 -119.20971 13 34.20086 -119.20908 14 34.20677 -119.20847 15 34.20087 -119.20775 16 34.20081 -119.20710 17 34.20082 -119.20640 18 34.20079 -119.20576 19 34.20091 -119.20576 20 34.20077 -119.20449 21 34.20087 -119.20377 22 34.20075 -119.20377 23 34.20075 -119.20392 23 34.20074 -119.20182 24 34.20076 -119.20182 25 34.20076 -119.20149 27 34.20081 -119.19983 28 34.20072 -119.199847 30 34.20075 -119.19784 31 34.20070 -119.21687 32 34.20058 -119.21054			
13 34.20086 -119.20908 14 34.20677 -119.20847 15 34.20087 -119.20775 16 34.20081 -119.20710 17 34.20082 -119.20640 18 34.20079 -119.20576 19 34.20091 -119.20576 20 34.20077 -119.20449 21 34.20087 -119.20377 22 34.20075 -119.20392 23 34.20084 -119.20182 24 34.20076 -119.20182 25 34.20076 -119.20149 26 34.20076 -119.20149 27 34.20081 -119.20149 28 34.20076 -119.20149 30 34.20072 -119.19983 28 34.20076 -119.19983 29 34.20075 -119.19784 31 34.20070 -119.21687 32 34.20058 -119.21054			
14 34.20677 -119.20847 15 34.20087 -119.20775 16 34.20081 -119.20710 17 34.20082 -119.20640 18 34.20079 -119.20576 19 34.20091 -119.20576 20 34.20077 -119.20449 21 34.20087 -119.20377 22 34.20075 -119.20392 23 34.20084 -119.20392 23 34.20074 -119.20182 24 34.20076 -119.20145 25 34.20076 -119.20149 27 34.20076 -119.20149 27 34.20076 -119.20049 27 34.20076 -119.19983 28 34.20072 -119.199847 30 34.20075 -119.19784 31 34.20070 -119.21687 32 34.20058 -119.21054			
15 34.20087 -119.20775 16 34.20081 -119.20710 17 34.20082 -119.20640 18 34.20079 -119.20576 19 34.20079 -119.20576 20 34.20077 -119.20449 21 34.20087 -119.20377 22 34.20075 -119.20392 23 34.20075 -119.20392 23 34.20074 -119.20182 24 34.20076 -119.20182 25 34.20076 -119.20149 27 34.20081 -119.19983 28 34.20072 -119.199847 30 34.20075 -119.19847 31 34.20070 -119.21687 32 34.20058 -119.21054			
1634.20081-119.207101734.20082-119.206401834.20079-119.205761934.20091-119.205082034.20077-119.204492134.20087-119.203772234.20075-119.203722334.20084-119.202452434.20074-119.201822534.20076-119.201162634.20076-119.200492734.20081-119.199832834.20072-119.199843034.20075-119.197843134.20070-119.216873234.20058-119.21054			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
18 34.20079 -119.20576 19 34.20091 -119.20508 20 34.20077 -119.20449 21 34.20087 -119.20377 22 34.20075 -119.20392 23 34.20084 -119.20245 24 34.20074 -119.20182 25 34.20076 -119.20116 26 34.20076 -119.20049 27 34.20081 -119.19983 28 34.20072 -119.199847 30 34.20075 -119.19784 31 34.20070 -119.21687 32 34.20058 -119.21054			
1934.20091-119.205082034.20077-119.204492134.20087-119.203772234.20075-119.203922334.20084-119.202452434.20074-119.201822534.20076-119.201162634.20076-119.200492734.20081-119.199832834.20072-119.199842934.20075-119.197843034.20075-119.197843134.20070-119.216873234.20058-119.21054			
2034.20077-119.204492134.20087-119.203772234.20075-119.203922334.20084-119.203922334.20074-119.201822434.20074-119.201822534.20076-119.201162634.20076-119.200492734.20081-119.199832834.20072-119.199082934.20075-119.198473034.20075-119.197843134.20070-119.216873234.20058-119.21054			
2134.20087-119.203772234.20075-119.203922334.20084-119.202452434.20074-119.201822534.20076-119.201162634.20076-119.200492734.20081-119.199832834.20072-119.199832934.20075-119.198473034.20075-119.197843134.20070-119.216873234.20058-119.21054			
2234.20075-119.203922334.20084-119.202452434.20074-119.201822534.20076-119.201162634.20076-119.200492734.20081-119.199832834.20072-119.199082934.20082-119.198473034.20075-119.197843134.20070-119.216873234.20026-119.217003334.20058-119.21054			
2334.20084-119.202452434.20074-119.201822534.20076-119.201162634.20076-119.200492734.20081-119.199832834.20072-119.199082934.20082-119.1998473034.20075-119.197843134.20070-119.216873234.20026-119.217003334.20058-119.21054		34.20087	-119.20377
2434.20074-119.201822534.20076-119.201162634.20076-119.200492734.20081-119.199832834.20072-119.199082934.20082-119.198473034.20075-119.197843134.20070-119.216873234.20026-119.217003334.20058-119.21054		34.20075	
2534.20076-119.201162634.20076-119.200492734.20081-119.199832834.20072-119.199082934.20082-119.198473034.20075-119.197843134.20070-119.216873234.20026-119.217003334.20058-119.21054	23	34.20084	-119.20245
2634.20076-119.200492734.20081-119.199832834.20072-119.199082934.20082-119.198473034.20075-119.197843134.20070-119.216873234.20026-119.217003334.20058-119.21054	24	34.20074	-119.20182
2734.20081-119.199832834.20072-119.199082934.20082-119.198473034.20075-119.197843134.20070-119.216873234.20026-119.217003334.20058-119.21054	25	34.20076	-119.20116
2834.20072-119.199082934.20082-119.198473034.20075-119.197843134.20070-119.216873234.20026-119.217003334.20058-119.21054	26	34.20076	-119.20049
2934.20082-119.198473034.20075-119.197843134.20070-119.216873234.20026-119.217003334.20058-119.21054	27	34.20081	-119.19983
3034.20075-119.197843134.20070-119.216873234.20026-119.217003334.20058-119.21054	28	34.20072	-119.19908
3134.20070-119.216873234.20026-119.217003334.20058-119.21054	29	34.20082	-119.19847
32 34.20026 -119.21700 33 34.20058 -119.21054	30	34.20075	-119.19784
33 34.20058 -119.21054	31	34.20070	-119.21687
	32	34.20026	-119.21700
34 34.20005 -119.21200	33	34.20058	-119.21054
	34	34.20005	-119.21200
35 34.20053 -119.20737	35	34.20053	-119.20737
36 34.19999 -119.20740	36	34.19999	-119.20740
37 34.20053 -119.20316			
38 34.20002 -119.20325	38	34.20002	-119.20325
39 34.20045 -119.19760			
40 34.19996 -119.19747			

				UN	IFIED S	SOIL CLAS	SIFICA		TEM (AS	STM D 2	2487)						
Ear	th Sys	tems Pa	acific	MAJOR DIVISIONS	GROUP SYMBOL		TYPICA	L DESCRIP	TIONS			APH. /IBOL					
				S	GW	WELL GRADE	D GRAVEL	S, GRAVEL-S	AND MIXTUF	RES, LITTL							
					GP	POORLY GRA			VEL-SAND		<u> </u>	\bigcirc					
P		ING		ED SO MATER 200	GM	SILTY GRAVE			MIXTURES,	NON-PLAS	ѕтіс ₿	Ω.					
				LE OF HAN #	GC	CLAYEY GRA	VELS, GRA	VEL-SAND-CI	AY MIXTUR	ES, PLAST	IS	\odot					
.				GRAINED SOI HAN HALF OF MATERIAL ARGER THAN #200 SIEVE SIZE	SW	WELL GRADE	D SANDS,	GRAVELLY S	ANDS, LITTL	E OR NO F							
L	LEGEND					POORLY GRA	DED SAND	S OR GRAVE	LLY SANDS,	LITTLE O	R NO						
					SM	SILTY SANDS	. SAND-SIL	T MIXTURES.	NON-PLAST	IC FINES							
SAMPLE / S		FACE	GRAPH.	COARSE MORE T	SC	CLAYEY SAN	-					\mathbb{X}					
WATER			SYMBOL	S S	ML	INORGANIC S		/ERY FINE S/	NDS, SILTY	OR CLAY	EY						
CALIFORN	IA MODIFI	IED			CL	FINE SANDS	LAYS OF L	OW TO MEDI	UM PLASTIC	ITY, GRA	VELLY	\mathcal{H}					
STANDARD PENE	ETRATION	TEST (SPT)		D S(1ATER #200	OL	CLAYS, SANE	-					\geq					
SHELB	BY TUBE			NEI E OF N THAN SIZE	MH	PLASTICITY	ILTS, MICA	CEOUS OR D	IATOMACEO	US FINE S							
В	ULK		\bigcirc	GRAINED SOI OR MORE OF MATERIAL SMALLER THAN #200 SIEVE SIZE	СН	OR SILTY SO	,			AVS		\mathcal{H}					
	FACE WA ⁻ IG DRILLIN		T	E G LF OR IS SMA	ОН	ORGANIC CLA						$\overline{77}$					
SUBSUR	FACE WA	TER	$\overline{\underline{\nabla}}$		PT	SILTS		VORCANIC	2011 2								
AFTE		NG	=			MOISTURE			50IL5								
DRY		SLIGHT			MO		1	RY MOIS			TURATE						
		SLIGITI				STENCY			I VV		TURAL)					
	COARS						F	INE GRAI		s							
	BLOWS/FO	ТС					FINE GRAINE BLOWS/FOOT										
0-10				0-10 0-16 11-30 17-50 31-50 51-83		0-10 0-16		ER	LOOSE		SPT 0-2		CA SAMPLER 0-3		VE	RY SOFT	
	1-50 51-83					MEDIUM DE DENSE		3-4 5-8		4- 8-1			SOFT				
OVER 50				VERY DEM	NSE	9-15 16-30		14-: 26-			STIFF RY STIFF						
							30	OVE	R 50		HARD						
		S STANDA				51225		R SQUAR			IG						
# 2		# 40		# 10		4	3/4"	3		12"							
π 2	.00	# 40	SAND	#10	π	-				12							
SILT & CLAY	FINE	= ,	MEDIUM		RSE	FINE		OARSE	COBBL		BOULDER	١S					
		- '															
MAJOR DIVI				TRICAL													
		CORE, FRAG	GMENT, O	REXPOSURE		YPICAL DE			RP PICK; CAI		E CHIPPED						
		CANNOT BE	ATED HEA	AVY HAMMER	BLOWS	ARP PICK; CO											
VERY HA		HAMMER BL		WITH KNIFE	OR SHARF	PICK WITH DI	FFICULTY (HEAVY PRES	SURE); HEA	VY HAMM	IER BLOW						
HARD		REQUIRED	TO BREAK	< SPECIMEN													
MODERATELY						E OR SHARP P ER BLOW OR H KNIFE OR SHA						VITH					
SOFT	FT					KNIFE OR SHAL											
VERY SO	rr I	LIGHT MAN	JAL PRES	SURE				,		, ,							
			T	TPICAL E													
						YPICAL DE	JUNIPI	IUN3									
						TO SURFACE (OF, OR SHO	ORT DISTANC	E FROM. FR	ACTURES	S: SOME						
SLIGHTLY WEA						TO SURFACE											
WEATHER	RED	"RUSTY", FE	LDSPAR	CRYSTALS AF	RE "CLOUI	DY"				.							
MODERAT WEATHER HIGHLY WEAT DECOMPO						OUT; FELDSPA ON PRODUCES						D					
DECOMPO	SED	FELDSPAR	AND Fe-M	g MINERALS /	ARE COMP	DUT, BUT RESI	RED TO CL	4Y				_,					

9	DR	RILL F	D BY: R. Wagner RIG: Mobile B-53 with Automatic Hammer TYPE: 6" Hollow Stem Auger			JOI	P. 3 NO.:	ing No. AGE 1 OF 302524-0 TE: 11/1/	
			OXNARD AIRPORT RWY 7-25 AND TWY		SAMPLE DATA				
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.	
	۳ ۱		SOIL DESGRIPTION	N N N N N N N N N N N N N N N N N N N	√S [ркγ	МО	BH	
0 _			4" AC over 9" Brown CLAYEY SAND with GRAVEL						
1 - 2	<u>SP</u> CL	$\overline{\ }$	(misc. AB) +/- 4" POORLY GRADED SAND: brown, medium _ dense, moist (Fill)	0.5 - 1.0	0			6	
- 3		\sum	SANDY LEAN CLAY: dark brown, stiff, moist	1.0 - 2.5		119.4	13.4	9 1	
4		$\langle \rangle$		2.0 - 5.0	0			3	
5	CL		SANDY LEAN CLAY: brown, soft, moist (Alluvium)	5.0 - 6.5				2	
6 - 7		\sum							
- 8 -	ML		SILT: brown, very soft, moist, trace caliche	0.5 10.0				0	
- 9 -				8.5 - 10.0				0 2	
10 -			End of Boring @ 10.0'	=					
11 -			No subsurface water encountered						
12 - 13									
- 14									
- 15									
- 16									
- 17									
- 18 -									
- 19 -									
20 -									
21 -									
22 -									
23 - 24									
24 - 25									
25 -									

DEPTH (feet)

0

_

1

-

2

-

3

-4

-

5

-6 -7 -8

-

9

10

-

11 -12

13 _ 14 -15 _ 16 -17 -18 _ 19 -20 -21 _ 22 -23

24 -25 -26

Earth Systems Pacific

Boring No. 2

JOB NO.: 302524-001

PAGE 1 OF 1

DATE: 11/1/18

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger

SAMPLE DATA **OXNARD AIRPORT RWY 7-25 AND TWY USCS CLASS** DRY DENSITY (pcf) SYMBOL CONNECTOR IMPROVEMENTS INTERVAL (feet) SAMPLE TYPE MOISTURE (%) BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 4.5" AC over 10" Brown CLAYEY SAND with GRAVEL (misc. AB) 0.5 - 1.0 \bigcirc +/- 8" POORLY GRADED SAND: brown, loose, SP moist (Fill) 6 CL 1.5-3.0 121.1 13.8 13 SANDY LEAN CLAY: dark brown, very stiff, moist 16 2.0 - 4.0 Ο 3 5.0 - 6.5 2 CL SANDY LEAN CLAY: brown, soft, moist (Alluvium) 2 0 8.5 - 10.0 1 2 End of Boring @ 10.0' No subsurface water encountered

Boring No. 3

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 11/1/18

	S		OXNARD AIRPORT RWY 7-25 AND TWY		SAI	MPLE D	DATA	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
o			SOIL DESCRIPTION	≤	0,	DRY	Ň	<u>– п</u>
-			3.5" AC over 12" Brown CLAYEY SAND with GRAVEL (misc. AB)	0.5 - 1.5	0			
- 2	<u>SP</u>		+/- 6" POORLY GRADED SAND: brown, loose,	0.0 1.0				6
- 3-	CL	$\langle \rangle$	SANDY LEAN CLAY: dark brown, very stiff, moist	1.5 - 3.0		116.9	14.2	12 16
4	CL	$\left\langle \cdot \right\rangle$	SANDY LEAN CLAY: brown, soft, moist (Alluvium)	2.0 - 4.0	0			
- 5	02	$\langle \rangle$		5.0 - 6.5	\bullet			2 1
- 6		\sum						2
7	ML		SILT: brown, very soft, moist					
8				8.5 - 10.0				1
9				8.5 - 10.0				1
10			End of Boring @ 10.0'					
11			No subsurface water encountered					
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
- 22 -								
- 23 -								
24								
- 25								
- 26								
-								

LEGEND: Ring Sample Orab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

9	DF	RILL F	ED BY: R. Wagner RIG: Mobile B-53 with Automatic Hammer R TYPE: 6" Hollow Stem Auger			JOI	P. 3 NO.:	ing No. 4 AGE 1 OF 1 302524-001 TE: 11/1/18
	S		OXNARD AIRPORT RWY 7-25 AND TWY		SA		DATA	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ñ		SOIL DESGRIPTION	N N N N N N N N N N N N N N N N N N N	∕S	DRY	MO	BH
_0			3" AC over 14" Brown CLAYEY SAND with GRAVEL (misc. AB)					
1 - 2	<u>SP</u> CL		+/- 4" POORLY GRADED SAND: brown, loose, moist (Fill)					5
- 3		\sum	SANDY LEAN CLAY: dark brown, stiff, very moist	- 1.5 - 3.0		116.2	16.1	8 9
- 4		\sum		2.0 - 5.0	0			
- 5		\sum		5.0 - 6.5				1
- 6	CL	\geq	SANDY LEAN CLAY: brown, soft, moist (Alluvium)					2
- 7		\geq						
- 8		\sum						0
- 9		\sum		8.5 - 10.0				1 2
- 10		\geq						
- 11			End of Boring @ 10.0' No subsurface water encountered					
- 12								
- 13								
- 14								
- 15								
- 16								
- 17								
- 18								
- 19								
- 20								
- 21								
- 22								
- 23								
- 24								
- 25								
- 26								
-								

LEGEND: Ring Sample Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Earth Systems Pacific

Boring No. 5 PAGE 1 OF 1

DATE: 11/1/18

JOB NO.: 302524-001

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger

					SAI			<u>12. 11/1/18</u>
DEPTH (feet)	USCS CLASS	SYMBOL	OXNARD AIRPORT RWY 7-25 AND TWY CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ne		SOIL DESCRIPTION	N L	S_ S_	DRY	MO	B E
- 0 - 1			4.5" AC over 12" Brown CLAYEY SAND with GRAVEL (misc. AB)	0.5 - 1.5				
- 2	<u>SP</u>	: 	+/- 4" POORLY GRADED SAND: brown, loose, _moist (Fill)	0.5 - 1.5	$ \circ $			4
- 3	SM	· · · · ·	SILTY SAND: dark brown, medium dense, moist	1.5 - 3.0		118.3	14.5	⁴ 12 12
- 4	0			2.0 - 4.0	0			
- 5	CL	$\langle \rangle$	SANDY LEAN CLAY: brown, very soft, moist, trace caliche deposits (Alluvium)	5.0 - 6.5				1 1
- 6		\mathbb{N}						1
- 7		\mathbb{N}						
8		\sum		8.5 - 10.0				0
9 -		\sum	very moist, trace clay	0.0 10.0				. 1
10 -			End of Boring @ 10.0'					
11 -			No subsurface water encountered					
12 -								
13 -								
14 - 15								
- 16								
- 17								
- 18								
- 19								
20								
21								
22 -								
23 -								
24 -								
25 -								
26 -			Ring Sample Grab Sample Shelby Tube Sample	SPT				

/	DF	RILL I	ED BY: R. Wagner RIG: Mobile B-53 with Automatic Hammer R TYPE: 6" Hollow Stem Auger			JOI	P. 3 NO.:	ing No. AGE 1 OF 302524-0 TE: 11/1/
	0		OXNARD AIRPORT RWY 7-25 AND TWY		SA	MPLE [DATA	
(feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	I INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	S		SOIL DESCRIPTION	LN C	S^ L	DRY	MO	BI PE
o — -			4" AC over 12" Brown CLAYEY SAND with GRAVEL (misc. AB)					
-	SP SM		+/- 4" POORLY GRADED SAND: brown, loose, moist (Fill)	- 1.5 - 3.5	$ \circ $			_
2 - 3 -		· · · · ·	SILTY SAND: dark brown, medium dense, moist	- 1.5 - 3.0	-	121.5	13.3	7 9 1
+ - - -	CL		SANDY LEAN CLAY: brown to light brown, soft, moist, trace caliche deposits (Alluvium)	5.0 - 6.5	•			1 1 2
	 		gray/brown mottled, very soft, trace clay	- 8.5 - 10.0				0 1
) D		\sum	End of Boring @ 10.0'	_				
1			No subsurface water encountered					
2								
3								
4								
5								
6								
7								
3								
• 9								
þ								
1								
- 2								
- 3								
- 4								
-								
.5 -								
26 -								

Boring No. 7

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 11/1/18

	S		OXNARD AIRPORT RWY 7-25 AND TWY		SA	MPLE D	ATA	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
o			SOIL DESCRIPTION	Z	S	ркγ	DM	
- 1	00		6" AC over 12" Brown CLAYEY SAND with GRAVEL (misc. AB)	0.5 - 1.5	0			
- 2 -	SP CL		+/- 4" POORLY GRADED SAND: brown, loose, moist (Fill)	1.0 - 2.5		121.9	13.3	8 11
3		$\langle \rangle$	SANDY LEAN CLAY: dark brown, very stiff, moist	2.0 - 3.5		121.9	10.0	9
4 - 5 -	CL		SANDY LEAN CLAY: brown, soft, moist, (Alluvium)	5.0 - 6.5				0 1 2
6 - 7 -								
8 - 9		<u> </u>	very soft	8.5 - 10.0				0 0 1
- 10		\sim	End of Boring @ 10.0'					
- 11			No subsurface water encountered					
- 12								
- 13								
- 14								
- 15								
-								
16 -								
17 -								
18 -								
19								
20								
- 21								
- 22								
-								
23 -								
24 -								
25								
- 26								
-								

Boring No. 8

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/31/18

	S		OXNARD AIRPORT RWY 7-25 AND TWY		SAI	MPLE D	DATA	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	n:		SOIL DESCRIPTION	N L	's'	DRY	MO	B
- 0 - 1			6.5" AC over 12" Brown CLAYEY SAND with GRAVEL (misc. AB)					
- 2 -	SP CL	\sum	+/- 4" POORLY GRADED SAND: brown, loose, moist (Fill) SANDY LEAN CLAY: dark brown, stiff, slightly	1.0 - 2.5		118.1	4.7	13 15
3 - 4	CL	\sum	Moist SANDY LEAN CLAY: brown, very soft, moist,	2.0 - 5.0	0			9
-			trace caliche (Alluvium)	5.0 - 6.5	\bullet			0 1
6 -								1
7 - 8		\sum						0
- 9 -		\sum	brown/gray mottled, soft, very moist, trace clay	8.5 - 10.0				2 1
10 -		$ \rightarrow $	End of Boring @ 10.0'					
11 - 12			No subsurface water encountered					
- 13								
- 14								
- 15								
- 16								
- 17								
18								
19 -								
20 -								
21 -								
22 -								
23 -								
24 - 25								
25 - 26								
-								

Boring No. 9

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/31/18

	0			Oxnard, California \overrightarrow{P} \overrightarrow{U}				
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS	ERVAL feet)	MPLE LYPE	DENSITY (pcf)	ISTURE (%)	-OWS R 6 IN.
	n		SOIL DESCRIPTION	LNI)	AS T	DRY	MOI	LB BI
— 0 — - 1			4" AC over 11" Brown SILTY SAND with GRAVEL (misc. AB)					7
- 2 -	CL	$\langle \rangle$	SANDY LEAN CLAY: dark brown, medium stiff, very moist (Fill)	1.5 - 3.0	0	102.6	19.7	5 6
3 - 4	CL		SANDY LEAN CLAY: brown, medium stiff, moist, caliche deposits (Alluvium)	3.0 - 5.0				0
5 - 6		$\langle \rangle$	very soft	5.0 - 6.5				1
- 7		\sum	gray/brown mottled					
- 8 - 9				8.5 - 10.0	\bullet			
- 10		$\backslash \rangle$						
- 11			End of Boring @ 10.0' No subsurface water encountered					
- 12								
13								
14 -								
15 -								
16 -								
17 -								
18 -								
19 -								
20 -								
21 -								
22 -								
23 -								
24 -								
25 -								
26 -								

)	DF	RILL F	D BY: R. Wagner RIG: Mobile B-53 with Automatic Hammer TYPE: 6" Hollow Stem Auger	Ţ			P. 3 NO.: DAT	ng No. 1 AGE 1 OF 302524-00 E: 10/31/ [/]	
	SS		OXNARD AIRPORT RWY 7-25 AND TWY		SA	MPLE DATA			
UEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.	
	S		SOIL DESCRIPTION	<u>Z</u>	<i>*</i> 5'	DRY	MO	B	
-0			10" AC over 8" Brown SILTY SAND with GRAVEL (misc. AB)	0.5 - 1.5	0			5	
- 2	CL	$\langle \rangle$	SANDY LEAN CLAY: dark brown, stiff, moist (Fill)	- 1.5 - 3.0 1.5 - 2.5		115.0	13.6	10 1 <i>1</i>	
- 3 - 4	CL		LEAN CLAY: brown, soft, moist (Alluvium)	2.5 - 4.0	0				
- 5 - 6			caliche deposits	5.0 - 6.5	•			1 2 2	
- 7 - 8								0	
- 9 - 10			gray/brown mottled, very soft, very moist End of Boring @ 10.0'	8.5 - 10.0				1	
11 - 12 - 13 - 14 - 15 - 16 - 17 -			No subsurface water encountered						
- 18 - 19									
- 20									
- 21									
- 22									
- 23									
- 24									
- 25									
- 26									

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 11 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/31/18

			OXNARD AIRPORT RWY 7-25 AND TWY		SAI			
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ñ		SOIL DESCRIPTION	N N N N N N N N N N N N N N N N N N N	I'S	DRY	MO	
- 1			4.5" AC over 12" Brown SILTY SAND with GRAVEL (misc. AB)					4
- 2	CL	\mathbb{N}	SANDY LEAN CLAY: dark brown, stiff, moist (Fill)	1.5 - 3.0		104.0	21.5	6 8
- 3 -				2.0 - 4.0	0			
4 - 5 - 6 - 7	CL		SANDY LEAN CLAY: brown/light brown mottled, very soft, moist, caliche deposits (Alluvium)	5.0 - 6.5	•			0 0 1
- 8 - 9 - 10			very moist, trace clay	8.5 - 10.0	•			0 1 0
- 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 -			End of Boring @ 10.0' No subsurface water encountered					
22 - 23 - 24 - 25 - 26 -								

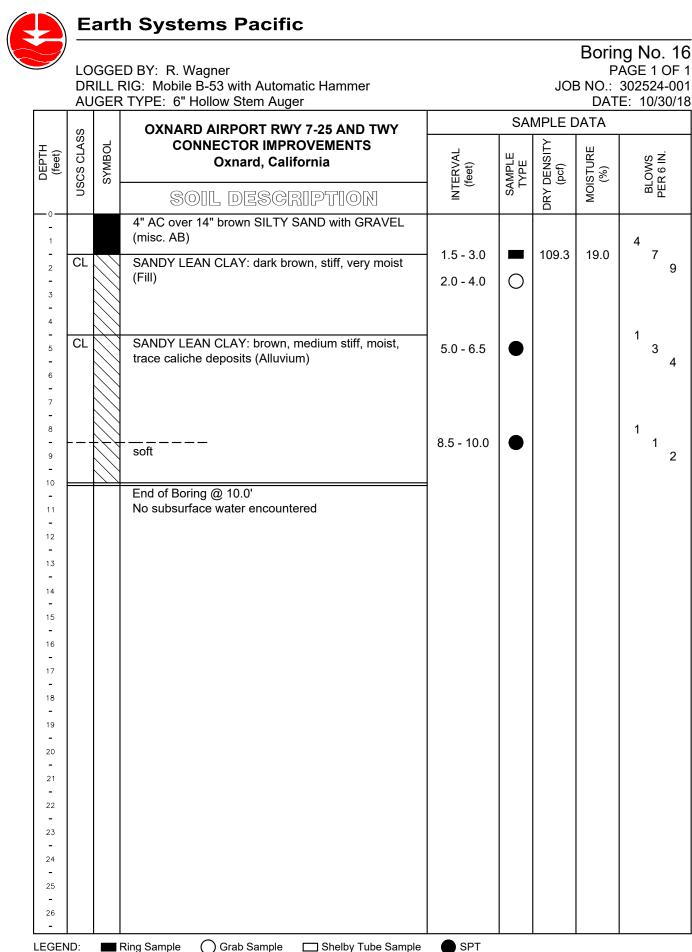
			n Systems Facilic					
	DF	RILL F	ED BY: R. Wagner RIG: Mobile B-53 with Automatic Hammer R TYPE: 6" Hollow Stem Auger			JOI	P. 3 NO.:	IG No. 12 AGE 1 OF 1 302524-001 E: 10/31/18
	6		OXNARD AIRPORT RWY 7-25 AND TWY		SA	MPLE [DATA	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
) S		SOIL DESCRIPTION	Ξ	S.	DRY	MO	BB
- 0 - 1			4" AC over 16" Brown SILTY SAND with GRAVEL (misc. AB)	0.5 - 1.5	0			3
- 2	CL	\mathbb{N}	SANDY LEAN CLAY: dark brown, stiff, moist, trace	1.5 - 3.0		95.5	24.8	7 9
- 3 -			caliche (Fill)	2.0 - 4.0	0			
4 - 5 - 6 -	CL		SANDY LEAN CLAY: brown/light brown mottled, soft, moist (Alluvium)	5.0 - 6.5	•			0 2 2
7 - 8 - 9 - 10			brown/gray mottled, very soft, very moist	8.5 - 10.0	•			1 1 1
- 11 - 12 - 13 -			End of Boring @ 10.0' No subsurface water encountered					
14 - 15 -								
16 - 17								
- 18								
- 19								
- 20								
- 21								
- 22								
- 23								
- 24								
- 25								
- 26								
-								

LEGEND: Ring Sample O Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Earth Systems Pacific

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 13 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/31/18

			TYPE: 6 Hollow Stem Auger	1	~ • •			E: 10/31/18
	ŝ		OXNARD AIRPORT RWY 7-25 AND TWY		SAI	MPLE D		
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
0	ŝ		SOIL DESCRIPTION	I I I	l'S	DRY	MO	BH
— 0 — - 1			5" AC over 14" brown SILTY SAND with GRAVEL (misc. AB)					5
- 2	CL	\backslash	SANDY LEAN CLAY: dark brown, stiff, very moist	1.5 - 3.0		101.2	22.0	7 12
- 3 -			(Fill)	2.0 - 4.0	0			
4 - 5 - 6 - 7	CL		SANDY LEAN CLAY: brown/light brown mottled, soft, moist (Alluvium)	5.0 - 6.5	•			1 1 2
/ - 8 - 9				8.5 - 10.0	•			1 1 1
- 10		\sim						
- 11 - 12 - 13 -			End of Boring @ 10.0' No subsurface water encountered					
14 - 15 - 16								
- 17 -								
18 - 19								
- 20								
- 21								
- 22								
- 23								
- 24								
- 25								
- 26								
-								


LEGEND: Ring Sample O Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

9	DF	RILL F	D BY: R. Wagner RIG: Mobile B-53 with Automatic Hammer TYPE: 6" Hollow Stem Auger			JOI	P. 3 NO.:	n g No. 1 AGE 1 OF 302524-00 E: 10/31/ ⁻
	S		OXNARD AIRPORT RWY 7-25 AND TWY		SA	MPLE D	DATA	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	I INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
- 0			SOIL DESCRIPTION	<u> </u>		DR	Σ	ш.
- 1			4.5" AC over 12" brown SILTY SAND with GRAVEL (misc. AB)	0.5 - 1.5	0			3
- 2	CL	$\langle \rangle$	SANDY LEAN CLAY: dark brown, stiff, very moist	1.5 - 3.0		102.5	22.0	6 1(
-		\mathbb{N}	(Fill)	2.0 - 5.0	$ \circ $			
3 - 4 - 5				- 5.0 - 6.5				1
- 6 - 7	CL		SANDY LEAN CLAY: brown/light brown mottled, soft, moist, trace clay (Alluvium)	5.0 - 0.5				2
- 8 - 9				8.5 - 10.0				1 2
-		\sum						3
10 -			End of Boring @ 10.0'	=				
11 -			No subsurface water encountered					
12 -								
13 -								
14 -								
15 -								
16								
17								
- 18								
- 19								
- 20								
- 21								
- 22								
- 23								
-								
24 -								
25 -								
26								

LEGEND: Ring Sample Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

9	DF	RILL F	D BY: R. Wagner RIG: Mobile B-53 with Automatic Hammer TYPE: 6" Hollow Stem Auger				P. 3 NO.: DAT	n g No. AGE 1 OI 302524-0 E: 10/30/
	ŝ		OXNARD AIRPORT RWY 7-25 AND TWY		SA		DATA	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	I INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
			SOIL DESCRIPTION	Ξ	S,	DRY	MO	E E
— 0 — - 1			4" AC over 15" brown SILTY SAND with GRAVEL (misc. AB)					4
- 2	CL	$\backslash\rangle$	SANDY LEAN CLAY: dark brown, stiff, very moist	1.5 - 3.0		100.1	23.4	7 1
- 3		\sum	(Fill) └──────	2.0 - 4.0	0			
- 4		[caliche deposits					
- 5		\sum		5.0 - 6.5				1
- 6	CL	\mathbb{N}	SANDY LEAN CLAY: brown/light brown mottled, very soft, moist (Alluvium)					
-		\mathbb{N}						
7 -		\mathbb{N}						
8 -	<u>-</u>	$\left\{ \right\}$		8.5 - 10.0				1
9 -		\mathbb{N}	Solt					:
10 -			End of Boring @ 10.0'	=				
11 -			No subsurface water encountered					
12								
13								
- 14								
- 15								
- 16								
- 17								
- 18								
- 19								
-								
20 -								
21 -								
22 -								
23 -								
24 -								
25								
- 26								

LEGEND: Ring Sample Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

LEGEND: Ring Sample Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 17 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/30/18

					SAI	MPLE D		E. 10/30/18
oTH et)	USCS CLASS	BOL	OXNARD AIRPORT RWY 7-25 AND TWY CONNECTOR IMPROVEMENTS	AL				ωż
DEPTH (feet)	scs (SYMBOL	Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
			SOIL DESCRIPTION	Ξ	S,	DRY	M	
-			4.5" AC over 13" brown CLAYEY SAND with GRAVEL (misc. AB)	0.5 - 1.5	0			3
- 2	CL	\sim	SANDY LEAN CLAY: dark brown, stiff, very moist	1.5 - 3.0		104.8	20.8	5 9
- 3		\sum		3.0 - 5.0	0			
- 4	CL	\sum	SANDY LEAN CLAY: dark brown, medium stiff, moist (Alluvium)					
- 5			brown, soft	5.0 - 6.5				1
- 6		\sum	blown, son					2
7		\square						
8		\bigcirc		8.5 - 10.0				0 2
9		\sum	gray/brown mottled, medium stiff	0.5 - 10.0				4
10 -			End of Boring @ 10.0'	=				
11 -			No subsurface water encountered					
12 -								
13 -								
14								
15 - 16								
- 17								
-								
- 19								
- 20								
- 21								
- 22								
- 23								
- 24								
- 25								
26								
L								L

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 18 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/30/18

			OXNARD AIRPORT RWY 7-25 AND TWY		SA	MPLE D		<u>L. 10/30/10</u>
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ŝ		SOIL DESCRIPTION	LN LN	S L	DRY	MOI	18 H
0 - 1			4" AC over 13" brown CLAYEY SAND with GRAVEL (misc. AB)					2
- 2 -	CL	\sum	SANDY LEAN CLAY: dark brown, medium stiff, very moist (Fill)	1.5 - 3.0 2.5 - 5.0		103.2	20.1	4 7
3 - 4	CL		SANDY LEAN CLAY: dark brown, medium stiff, moist (Alluvium)					
- 5 - 6			soft, caliche deposits	5.0 - 6.5	•			1 1 2
- 7 - 8				8.5 - 10.0				2 3
9 - 10			gray/brown mottled, medium stiff	0.0 - 10.0				3
- 11 - 12 - 13			End of Boring @ 10.0' No subsurface water encountered					
- 14 - 15 -								
16 - 17 -								
18 - 19								
- 20 -								
21 - 22								
- 23 -								
24 - 25								
- 26 -								

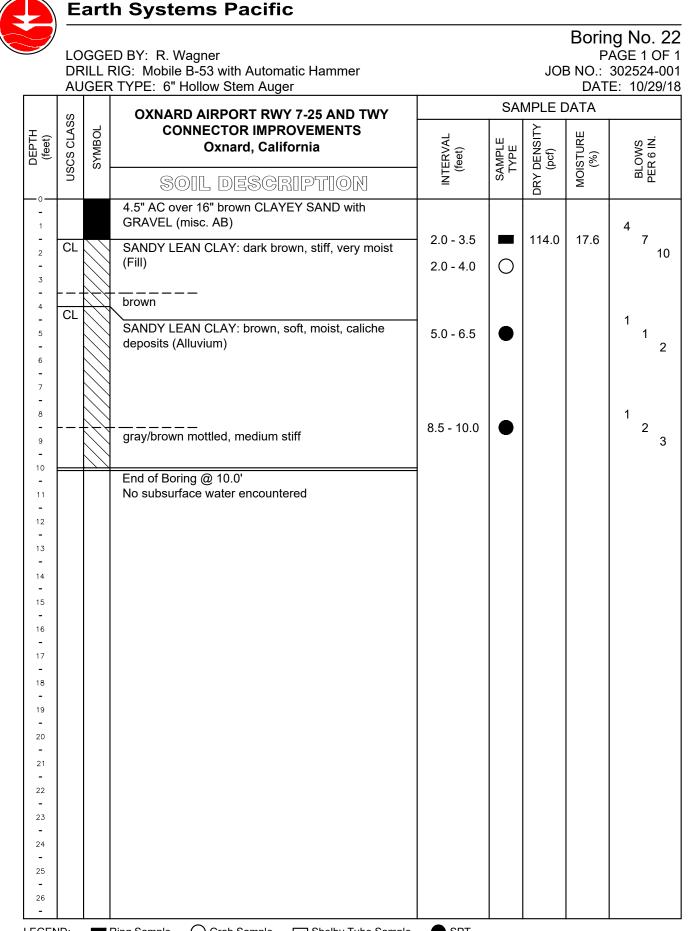
LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 19 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/30/18

			OXNARD AIRPORT RWY 7-25 AND TWY		SAI	MPLE D		L. 10/30/10
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ŝ		SOIL DESCRIPTION	L L	S^ T	DRY	MOI	IB II
- 1			4" AC over 13" brown CLAYEY SAND with GRAVEL (misc. AB)	0.5 - 1.5	0			5
- 2 -	CL	\mathbb{N}	SANDY LEAN CLAY: dark brown, stiff, very moist (Fill)	1.5 - 3.0 1.5 - 3.5		113.4	16.9	8 11
3 - 4 - 5 - 6 -	CL		SANDY LEAN CLAY: brown, soft, moist, caliche deposits (Alluvium)	5.0 - 6.5	•			1 1 3
7 - 8 - 9 - 10			light brown, very soft	8.5 - 10.0	•			0 1 1
- 11 - 12 - 13			End of Boring @ 10.0' No subsurface water encountered					
- 14 - 15 - 16								
- 17 - 18 -								
19 - 20 - 21								
- 22 - 23 -								
24 - 25 - 26 -								

LEGEND: Ring Sample Orab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

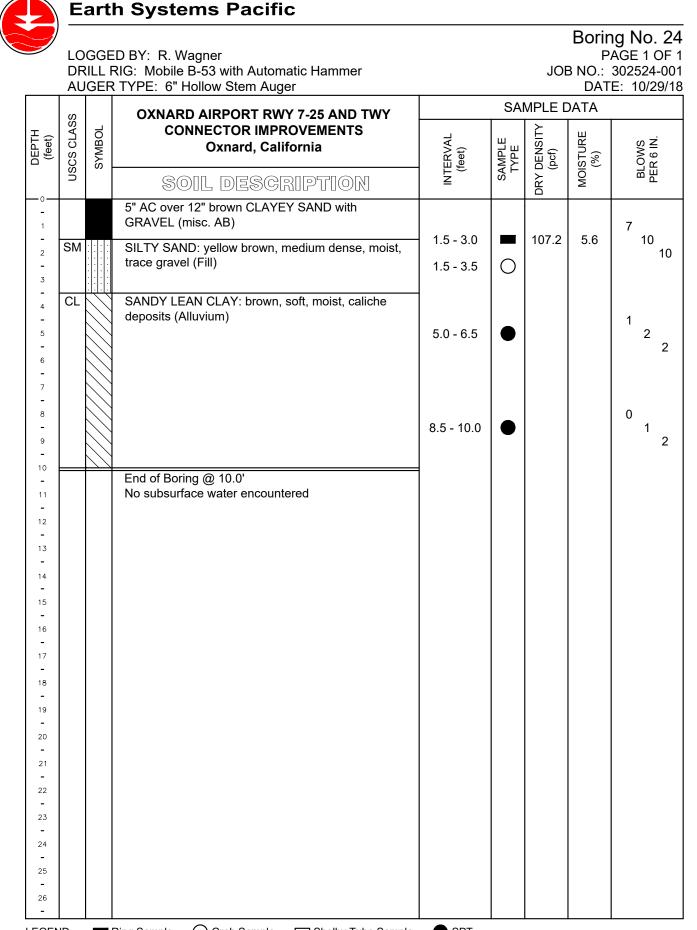
LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 20 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/30/18

			OXNARD AIRPORT RWY 7-25 AND TWY		SAI	MPLE D		L. 10/30/10
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
) N		SOIL DESCRIPTION	I I I	S_	DRY	MO	Pe BI
0 <u>-</u> 1			4" AC over 13" brown CLAYEY SAND with GRAVEL (misc. AB)	4.5.00			47.0	3
- 2 -	CL	\square	SANDY LEAN CLAY: dark brown, stiff, very moist (Fill)	1.5 - 3.0		111.7	17.6	8 11
3 - 4	CL	\square	SANDY LEAN CLAY: brown, soft, moist (Alluvium)	3.0 - 6.0				
- 5 - 6 -			caliche deposits	5.0 - 6.5	•			0 1 2
7 - 8 - 9			gray/brown mottled	8.5 - 10.0	•			1 2 3
10 - 11 - 12			End of Boring @ 10.0' No subsurface water encountered					
- 13 - 14								
- 15 - 16 -								
17 - 18								
19 - 20								
- 21 - 22								
- 23 - 24								
- 25 -								
26 -								


LEGEND: Ring Sample O Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 21 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/30/18

					SAI			E. 10/30/18
DEPTH (feet)	USCS CLASS	SYMBOL	OXNARD AIRPORT RWY 7-25 AND TWY CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ns	0,7	SOIL DESCRIPTION		SA	DRY ((MOI	BL
- 0 - 1			3" AC over 13" brown CLAYEY SAND with GRAVEL (misc. AB)	0.5 - 1.5	0			4
- 2 -	CL	\sum	SANDY LEAN CLAY: dark brown, stiff, moist (Fill)	1.5 - 3.0 1.5 - 3.0		119.5	13.9	9 15
3 -	CL	$\langle \rangle$	SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium)	1.0 - 0.0				
4 - 5 - 6 - 7				5.0 - 6.5	•			0 1 1
- 8 - 9 - 10			gray/brown mottled, medium stiff End of Boring @ 10.0'	8.5 - 10.0	•			1 2 3
- 11 - 12 - 13			No subsurface water encountered					
- 14 - 15 -								
16 - 17 - 18								
- 19 - 20								
- 21 - 22 -								
23 - 24 -								
25 - 26 -								


LEGEND: Ring Sample O Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 23 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/29/18

			OXNARD AIRPORT RWY 7-25 AND TWY		SAI		DATA	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
) N		SOIL DESCRIPTION	I I	S_	DRY	MO	Pe BI
- - 1			6" AC over 13" brown CLAYEY SAND with GRAVEL (misc. AB)	0.5 - 1.5	0			9
- 2 -	CL	$\langle \rangle$	SANDY LEAN CLAY: dark brown, stiff, moist (Fill)	1.5 - 3.0 1.5 - 3.5		118.5	13.8	12 12
3 - 4	CL		SANDY LEAN CLAY: brown, medium stiff, moist	3.5 - 5.0	0			
- 5		\sim	(Alluvium) 	5.0 - 6.5				1
- 6 -			light brown					2
7 - 8								1
- 9 -		$\langle \rangle$	gray/brown mottled, medium stiff, caliche deposits	8.5 - 10.0				2 4
10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 -			End of Boring @ 10.0' No subsurface water encountered					
-								

LEGEND: Ring Sample Orab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger

			OXNARD AIRPORT RWY 7-25 AND TWY		SAI			L. 10/20/10
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ñ		SOIL DESCRIPTION	LNI LN	S/	DRY	MO	B
0 - 1			5" AC over 14" brown SILTY GRAVEL with SAND (misc. AB)	0.5 - 1.5	0			4
- 2 -	CL	\sum	SANDY LEAN CLAY: dark brown, medium stiff, very moist (Fill)	1.5 - 3.0		106.3	19.0	6 7
3 - 4	CL	\square	SANDY LEAN CLAY: brown, soft, moist, caliche deposits (Alluvium)	3.0 - 5.0	0			
- 5 -				5.0 - 6.5	\bullet			0 2 2
6 - 7 -	SM	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	SILTY SAND: brown, loose, moist					
8 - 9 -	ML		SILT: brown, very soft, very moist, trace clay	8.5 - 10.0				0 0 1
10 -			End of Boring @ 10.0'					
11			No subsurface water encountered					
- 12								
-								
13 -								
14								
15								
- 16								
-								
17 -								
18								
19								
- 20								
-								
21 -								
22								
23								
- 24								
-								
25 -								
26								
	L		Ring Sample O Grab Sample D Shelby Tube Sample	SPT	I			

Boring No. 25 PAGE 1 OF 1 JOB NO.: 302524-001

DATE: 10/28/18

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger

			OXNARD AIRPORT RWY 7-25 AND TWY		SAI			<u>L. 10/20/10</u>
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ŝ		SOIL DESCRIPTION	LNI LN	S/	DRY	MO	B
0 - 1 -			5" AC over 15" brown SILTY GRAVEL with SAND (misc. AB)	0.5 - 1.5	0			4
2 -	CL	\mathbb{N}	LEAN CLAY: gray brown, stiff, very moist (Fill)	2.0 - 3.5		110.1	17.1	6 9
3 -		\sum		2.0 - 4.0	0			
4	CL	\sum	SANDY LEAN CLAY: brown, soft, moist (Alluvium)	4.0 - 6.0	0			1
5 -	OL	\mathbb{N}	SANDT LEAN CLAT. DIOWII, SOIL, MOIST (Alluvium)	5.0 - 6.5				2 2
6 -		\sum						
7		\square						
8 -		\sum	very soft, caliche deposits	8.5 - 10.0				0 1
9 -		\sum						1
10 -			End of Boring @ 10.0'					
11 -			No subsurface water encountered					
12 -								
13 -								
14 -								
15 -								
16 -								
17 -								
18 -								
19 -								
20 -								
21 -								
22 -								
23 -								
24 -								
25 -								
26 -								
			Ring Sample 🕜 Grab Sample 🗔 Shelby Tube Sample	SPT				J

Boring No. 26 PAGE 1 OF 1 JOB NO.: 302524-001

DATE: 10/28/18

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger

Image: Section of the section of t	BLOWS PER 6 IN.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 7
5.5" AC over 16" brown SILTY GRAVEL with SAND (misc. AB) 0.5 - 1.5 0 2 CL SANDY LEAN CLAY: dark brown, stiff, very moist (Fill) 2.0 - 3.5 97.4 20.8 3 CL SANDY LEAN CLAY: brown, stiff, very moist (Fill) 5.0 - 6.5 97.4 20.8	7
3 CL SANDY LEAN CLAY: dark brown, stiff, very moist 3 (Fill) 2.0 - 4.0 4 5 CL SANDY LEAN CLAY: brown, soft, moist, caliche 5 CL SANDY LEAN CLAY: brown, soft, moist, caliche	
- - - 5.0 - 6.5 - - - -	7
	1 1 2
	0
	2 3
- End of Boring @ 10.0' No subsurface water encountered 12	
- 13 -	
14 - 15 -	
16 - 17 -	
18 - 19 -	
20 - 21	
23 -	
24 - 25	
- 26 - 1	

Boring No. 27 PAGE 1 OF 1

DATE: 10/28/18

JOB NO.: 302524-001

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger

			OXNARD AIRPORT RWY 7-25 AND TWY		SAI			L. 10/20/10
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
) îî		SOIL DESCRIPTION	N L	S/	DRY	MO	BH
0 - 1 -			3" AC over 17" brown SILTY GRAVEL with SAND (misc. AB)	0.5 - 1.5	0			8
2 - 3 -	SM		SILTY SAND: brown, medium dense, slightly moist, trace gravel (Fill)	1.5 - 3.0 2.0 - 4.0		122.5	4.9	11 11
4 - 5 - 6 -	CL		SANDY LEAN CLAY: brown, medium stiff, moist, caliche deposits (Alluvium) very soft	5.0 - 6.5	•			1 1 1
7 - 8 - 9 -				8.5 - 10.0	•			0 0 1
10 - 11 -			End of Boring @ 10.0' No subsurface water encountered					
12 - 13								
14 - 15								
- 16 - 17								
- 18 - 19								
- 20 - 21								
- 22 -								
23 - 24 -								
25 - 26 -								
			Ring Sample O Grab Sample Shelby Tube Sample	SPT				

LEGEND: Ring Sample O Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 28 PAGE 1 OF 1

DATE: 10/28/18

JOB NO.: 302524-001

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger

			OXNARD AIRPORT RWY 7-25 AND TWY		SAI			L. 10/20/10
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ŝ		SOIL DESCRIPTION	LNI LN	S_ S	DRY	MO	LE BI
0 - 1 -			5.5" AC over 14" brown SILTY GRAVEL with SAND (misc. AB)	0.5 - 1.5	0			5
2 - 3 -	CL		SANDY LEAN CLAY: brown/gray mottled, stiff, moist (Fill)	1.5 - 3.0 2.0 - 5.0	0	112.5	15.3	10 10
4 - 5 - 6	CL		SANDY LEAN CLAY: brown, soft, moist, caliche deposits (Alluvium)	5.0 - 6.5	•			1 1 1
- 7 - 8								0
- 9 - 10			medium stiff	8.5 - 10.0				2 3
- 11 - 12			End of Boring @ 10.0' No subsurface water encountered					
- 13 -								
14 - 15 -								
16 - 17 -								
18 - 19 -								
20 - 21								
- 22 - 23								
- 24 - 25								
- 26 -			Ring Sample O Grab Sample D Shelby Tube Sample	SPT				

LEGEND: Ring Sample Orab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 29 PAGE 1 OF 1

JOB NO.: 302524-001 DATE: 10/28/18

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 30 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/28/18

			OXNARD AIRPORT RWY 7-25 AND TWY		SA			<u>L. 10/20/10</u>
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ñ		SOIL DESCRIPTION	<u> </u>	S'	DRY	MO	88
- 0 - 1			4" AC over 14" brown SILTY GRAVEL with SAND (misc. AB)	0.5 - 1.5	0			
- 2	CL	\square	SANDY LEAN CLAY: dark brown, stiff, moist (Fill)	1.5 - 3.0		112.2	14.7	6 7
- 3 -		\mathbb{N}		2.0 - 5.0	0			9
4		$\left \right\rangle$		50.05				0
5 - 6 -	CL		SANDY LEAN CLAY: brown, soft, moist, caliche deposits (Alluvium)	5.0 - 6.5				1 2
7		$\left \right\rangle$						0
8 - 9 -	ML		SILT: gray/brown mottled, medium stiff, moist, caliche deposits	8.5 - 10.0				2 3 5
10 - 11 - 12			End of Boring @ 10.0' No subsurface water encountered					
- 13 -								
14 - 15 -								
16 -								
17 - 18								
- 19								
- 20								
- 21								
- 22 -								
23 -								
24 -								
25 -								
26 -								

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 31 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 11/1/18

			OXNARD AIRPORT RWY 7-25 AND TWY		SA	SAMPLE DATA						
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.				
0	ñ		SOIL DESCRIPTION	N	'S'	DRY	MO	BB				
- 0	SP		4" AC over 4" SILTY SAND with GRAVEL (misc. AB)	1.0 - 2.5		110.6	17.2	5 6 11				
2 -	CL	$\langle \rangle$	+/- 4" POORLY GRADED SAND: brown, loose, moist (Fill)	2.0 - 5.0	0							
3 - 4 -			SANDY LEAN CLAY: dark brown, stiff, very moist	-				1				
5 - 6 -	CL		SANDY LEAN CLAY: brown, soft, moist, (Alluvium)	5.0 - 6.5				2 2				
7 - 8 -				8.5 - 10.0				1 2				
9 - 10		$\langle \rangle$						5				
- 11 -			End of Boring @ 10.0' No subsurface water encountered									
12 - 13												
- 14 - 15												
- 16												
- 17 -												
18 - 19												
- 20 -												
21 - 22												
- 23												
24 -												
25 - 26												
-												

LEGEND: Ring Sample O Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 32 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 11/1/18

			OXNARD AIRPORT RWY 7-25 AND TWY		SA			
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ñ		SOIL DESCRIPTION	Z	'N'	DRY	MO	8 H
- 1 -	<u>SP</u>		4" AC over 3.5" SILTY SAND with GRAVEL (misc. AB)	1.0 - 2.5		110.8	16.3	4 7 10
2 -	CL	\geq	+/- 4" POORLY GRADED SAND: brown, loose, moist (Fill)	2.0 - 5.0	0			10
3 - 4 -			SANDY LEAN CLAY: dark brown, stiff, very moist (Fill)					1
5 - 6 -	CL		SANDY LEAN CLAY: brown, soft, moist (Alluvium)	5.0 - 6.5				1 2
7 - 8 -				8.5 - 10.0				1 3
9 - 10			medium stiff					3
- 11 -			End of Boring @ 10.0' No subsurface water encountered					
12 - 13								
- 14 -								
15 - 16								
- 17								
18 -								
19 - 20								
- 21 -								
22 - 23								
23 - 24								
- 25 -								
26 -								

Boring No. 33 PAGE 1 OF 1

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger

PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/31/18

	S		OXNARD AIRPORT RWY 7-25 AND TWY		SAI	MPLE D	DATA	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
0	SU		SOIL DESCRIPTION	LNI LNI	r S/	DRY	OM	B
- 1	SP		5" AC over 5.5" SILTY SAND with GRAVEL (misc. AB)	1.0 - 2.5		115.3	15.5	8 10
- 2 -	SM		+/- 4" POORLY GRADED SAND: brown, loose, moist (Fill)	1.5 - 3.5	0			15
3 - 4	CL		SILTY SAND: brown/dark brown mottled, medium dense, very moist, trace to some gravel, trace AC	3.5 - 5.0	0			
- 5 - 6		$\langle \rangle$	fragments (Fill) SANDY LEAN CLAY: brown, medium stiff, moist, caliche deposits (Alluvium)	5.0 - 6.5				3 3 3
- 7 -			gray/brown mottled					
8 - 9 -			soft	8.5 - 10.0	•			0 1 3
10 - 11			End of Boring @ 10.0' No subsurface water encountered					
- 12 - 13								
- 14 -								
15 - 16								
- 17 -								
18 - 19								
- 20 -								
21 - 22								
- 23 -								
24 - 25								
- 26 -								

Boring No. 34 PAGE 1 OF 1

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger

PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/31/18

	0		OXNARD AIRPORT RWY 7-25 AND TWY		SAI		DATA	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
o	ŝ		SOIL DESCRIPTION	L NI	's	ркү	ОМ	B
- 1 -	<u>SP</u>	<u> </u>	4" AC over 5" SILTY SAND with GRAVEL (misc. AB)	1.0 - 2.5 1.5 - 3.5		118.4	13.7	9 11 11
2 - 3	CL		+/- 4" POORLY GRADED SAND: brown, loose, moist					
- 4	CL	\sim	SANDY LEAN CLAY: dark brown, stiff, moist (Fill)					
- 5 - 6			SANDY LEAN CLAY: brown, medium stiff, moist, caliche deposits (Alluvium)	5.0 - 6.5	•			2 3 3
- 7 - 8								0
- 9 -			gray/brown mottled, very soft	8.5 - 10.0				1 1
10 - 11			End of Boring @ 10.0' No subsurface water encountered					
- 12								
- 13								
- 14								
- 15 -								
16 -								
17 -								
18 -								
19 - 20								
- 21								
- 22								
- 23								
- 24 -								
25 -								
26 -								

	DF	RILL F	D BY: R. Wagner RIG: Mobile B-53 with Automatic Hammer R TYPE: 6" Hollow Stem Auger			JOI	P. 3 NO.:	ng No. 35 AGE 1 OF 1 302524-001 E: 10/30/18
	ŝ		OXNARD AIRPORT RWY 7-25 AND TWY		SA	MPLE D	DATA	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE		MOISTURE (%)	BLOWS PER 6 IN.
	ŝ		SOIL DESCRIPTION	E -	5	DRY DENSITY (pcf)	MO	B
- 0 1	SM		5" AC over 8" SILTY SAND with GRAVEL (misc. AB)	1.0 - 2.5		117.0	14.6	5 7
- 2 -	CL		SILTY SAND: orange brown, medium dense, very moist, some gravel (Fill)					10
3 - 4	CL	$\left \right\rangle$	SANDY LEAN CLAY: dark brown, stiff, moist	3.0 - 5.0	$ \circ $			
4 - 5 -			SANDY LEAN CLAY: brown, medium stiff, moist (Alluvium)	5.0 - 6.5	•			2 3 3
6 - 7			gray/brown mottled, caliche deposits					
- 8 -				8.5 - 10.0				0
9 - 10			very soft, very moist					. 1
- 11 -			End of Boring @ 10.0' No subsurface water encountered					
12 - 13								
- 14 -								
15 -								
16 -								
17 - 18								
- 19								
- 20								
- 21 -								
22 -								
23 -								
24 - 25								
25 - 26								

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger

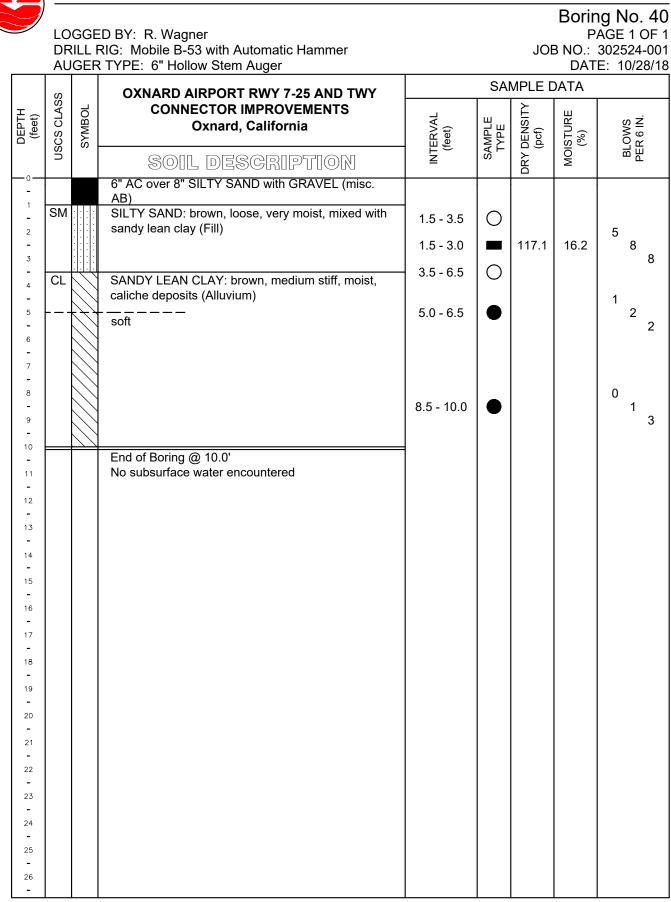
	Ś		OXNARD AIRPORT RWY 7-25 AND TWY		SA		ΑΤΑ	
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	n		SOIL DESCRIPTION	Z	S	DRY	MG	
- 1 -	SP	<u></u>	5.5" AC over 8" SILTY SAND with GRAVEL (misc. AB) +/- 4" POORLY GRADED SAND: brown, loose, moist	0.5 - 1.5 1.0 - 2.5	0	114.7	7.2	8 _
2 - 3	CL		(Fill)	2.5 - 5.0	0			7
- 4 -		$\langle \rangle$	moist					1
5 - 6 - 7	ML		SILT: gray/brown mottled, medium stiff, moist, caliche deposits (Alluvium)	5.0 - 6.5				2 4
- 8 - 9				8.5 - 10.0	•			0 1 2
- 10								2
-			End of Boring @ 10.0' No subsurface water encountered					
11								
12								
13 -								
14 -								
15 -								
16 -								
17 -								
18 -								
19 -								
20 -								
21 -								
22 -								
23 -								
24 -								
25								
26								
			Ring Sample O Grab Sample D Shelby Tube Sample	SPT				

Boring No. 36 PAGE 1 OF 1

JOB NO.: 302524-001 DATE: 10/30/18

LOGGED BY: R. Wagner DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Auger Boring No. 37 PAGE 1 OF 1 JOB NO.: 302524-001 DATE: 10/29/18

SAMPLE DATA SAMPLE DATA CONNECTOR IMPROVEMENTS OXNARD, California Soll_ DESCRIPTION Soll_ DESCRIPTION Soll_ DESCRIPTION CL SANDY LEAN CLAY: dark brown, stiff, very moist (rmisc. AB) 0.5 - 1.5 CL SANDY LEAN CLAY: dark brown, stiff, very moist caliche deposits (Alluvium) 0.5 - 1.5 CL SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium) 0.5 - 1.5 GL SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium) 0.5 - 1.5 GL SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium) 0.5 - 1.5 GL SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium) 0.6 - 5 GL SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium) 1 T 1 1 T 1 1 T 1 1 T 1 1 T 1 1 T 1 1 T 1 1 T 1 1 T 1 1 T 1 1 T 1 1 T 1 1 T </th <th></th> <th></th> <th></th> <th>TYPE: 6 Hollow Stem Auger</th> <th></th> <th></th> <th></th> <th></th> <th>E: 10/29/18</th>				TYPE: 6 Hollow Stem Auger					E: 10/29/18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		S		OXNARD AIRPORT RWY 7-25 AND TWY		SAI			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DEPTH (feet)	SCS CLAS	SYMBOL		ERVAL (feet)	AMPLE FYPE	DENSITY (pcf)	ISTURE (%)	LOWS .R 6 IN.
5.5° AC over 12° SILTY SAND with GRAVEL (misc. AB) 0.5 - 1.5 0 CL SANDY LEAN CLAY: dark brown, stiff, very moist (Fill) 1.0 - 3.0 110.1 16.2 5 CL SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium) 3.0 - 5.0 0 1 1 1 GL SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium) 3.0 - 5.0 0 1 1 1 gray/brown mottled, soft 8.5 - 10.0 8.5 - 10.0 1 1 1 2 End of Boring @ 10.0° No subsurface water encountered 1 1 1 2		ŝ		SOIL DESCRIPTION	I I C	S,	DRY	MO	PE BI
CL SANDY LEAN CLAY: dark brown, stiff, very moist (Fill) 1.0 - 3.0 I110.1 16.2 8 CL SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium) 3.0 - 5.0 O 1 CL SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium) 5.0 - 6.5 O 1 1 gray/brown mottled, soft 5.0 - 6.5 I I 1 1 Gray/brown mottled, soft 8.5 - 10.0 I I 1 1 Image: Second	-				0.5 - 1.5	0			5
1.5-3.0 0 2.CL SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium) 3.0-5.0 5.0-6.5 0 3.0-5.0 0 5.0-6.5 0 9 gray/brown mottled, soft 8.5-10.0 1 1	- 2	CL	$\langle \rangle$				110.1	16.2	8
CL SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium) 3.0 - 5.0 1 1 1 1 1 2 gray/brown mottled, soft 5.0 - 6.5 1 1 2 End of Boring @ 10.0' 8.5 - 10.0 1 1 1 No subsurface water encountered 1 1 1 1 No Soft 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			\bigcirc		1.5 - 3.0	O			
5.0-6.5 gray/brown mottled, soft	-	CL	\sum		3.0 - 5.0	0			
gray/brown mottled, soft 8.5 - 10.0 End of Boring @ 10.0° No subsurface water encountered	- 5		$\left \right\rangle$		5.0 - 6.5				1
8.5 - 10.0	6		\sum						1
gray/brown mottled, soft 8.5 - 10.0 End of Boring @ 10.0' No subsurface water encountered 1	7 -		\mathbb{N}						
End of Boring @ 10.0' No subsurface water encountered End of Boring @ 10.0' End of Bori	8		\mathbb{A}		8.5 - 10.0				
- End of Boring @ 10.0' No subsurface water encountered	-		$\left \right\rangle$	gray/brown mottled, soft					2
11 No subsurface water encountered I I I 12 I I I I I 13 I I I I I I 13 I I I I I I I 14 I I I I I I I I 14 I <	10		$ \rightarrow $	End of Boring @ 10.0'	1				
- -	11			No subsurface water encountered					
	- 12								
- - 15 - 16 - 17 - 17 - 18 - - - 19 - - - 20 - 21 - - - 22 - 23 - 24 - 25 -	- 13								
- - 15 - 16 - 17 - 17 - 18 - - - 19 - - - 20 - 21 - - - 22 - 23 - 24 - 25 -	-								
- -	-								
- 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 -	-								
- - 18 - 19 - 20 - 21 - 22 - 23 - 23 - 24 - 25 - - -	-								
- - 19 - 20 - 21 - 22 - 23 - 24 - 25 - - - 25 - - - 25 - - - 25 - - - 25 - - -	17 -								
- 20 - 21 - 22 - 22 - 23 - 24 - 25 - 25 - 25	18 -								
20									
21 - 22 - 23 - 24 - 25 -	20								
22 - - 23 - 24 - 25 -	21								
23 - 24 - 25 -									
24 - 25 -									
- 25 -									
	-								
20 -	-								
	26 -								


	DR	RILL F	D BY: R. Wagner RIG: Mobile B-53 with Automatic Hammer . TYPE: 6" Hollow Stem Auger			JOI	P. 3 NO.:	ng No. 3 AGE 1 OF 302524-0 E: 10/30/
			OXNARD AIRPORT RWY 7-25 AND TWY		SA	MPLE D		
DEPTH (feet)	USCS CLASS	SYMBOL	CONNECTOR IMPROVEMENTS Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	SU		SOIL DESCRIPTION	INT ()	SA	DRY I	MOI	L III
— 0 — - 1			4.5" AC over 12" SILTY SAND with GRAVEL (misc. AB)					
- 2	CL	\backslash	SANDY LEAN CLAY: brown/dark brown/yellow brown mottled, stiff, moist (Fill)	1.5 - 3.0		110.9	14.7	6 12
- 3		\sum		2.0 - 4.0	0			1:
- 4	CL	\sum	CANDY I FAN OLAY, having your off maint	_				
- 5	CL	\mathbb{N}	SANDY LEAN CLAY: brown, very soft, moist, caliche deposits (Alluvium)	5.0 - 6.5				0
- 6		$\langle \rangle$						1
- 7		$\langle \rangle$						
- 8		\sum						0
- 9		$\overline{\langle}$	soft	8.5 - 10.0				1
- 10		\sum						
-			End of Boring @ 10.0' No subsurface water encountered					
11 -								
12 -								
13 -								
14 -								
15 -								
16 _								
17								
- 18								
- 19								
- 20								
- 21								
- 22								
-								
23 -								
24 -								
25								1

LEGEND: Ring Sample Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

	DF	RILL F	D BY: R. Wagner RIG: Mobile B-53 with Automatic Hammer R TYPE: 6" Hollow Stem Auger			JOI	P. 3 NO.:	ng No. 3 AGE 1 OF 302524-0 E: 10/28/
τH	ILASS	ßOL	OXNARD AIRPORT RWY 7-25 AND TWY CONNECTOR IMPROVEMENTS					<i>6</i> 7
DEPTH (feet)	USCS CLASS	SYMBOL		I INTERVAL (feet)	SAMPLE TYPE DRY DENSITY (pcf) MOISTURE (%)		BLOWS PER 6 IN.	
0			SOIL DESCRIPTION	=		R	≥	¥
- 1			5" AC over 6" SILTY SAND with GRAVEL (misc. AB)	1.0 - 2.0	0			
-	SM		SILTY SAND: brown, loose, moist (Fill)	1.0 - 2.5		108.4	19.1	3
2 - 3	СН	\square	SANDY FAT CLAY: dark brown, medium stiff, very moist (Alluvium)	2.0 - 5.0	0	108.4	19.1	4 5
- 4 -		\square						1
5 - 6 -	ĊĽ		SANDY LEAN CLAY: brown, soft, moist, caliche deposits	5.0 - 6.5				2 2
7 - 8 -				8.5 - 10.0				2 3
9 - 10			medium stiff					5
- 11			End of Boring @ 10.0' No subsurface water encountered					
- 12								
- 13								
- 14								
- 15								
- 16								
- 17								
- 18								
-								
19 -								
20 -								
21 -								
22 -								
23 -								
- 24								
- 25								
-								

LEGEND: Ring Sample O Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Earth Systems Pacific

LEGEND: Ring Sample Orab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Earth Systems Pacific

APPENDIX B

Laboratory Test Results

BULK DENSITY TEST RESULTS

34

2.0 - 2.5

ASTM D 2937-17 (modified for ring liners)

BORING WET DEPTH MOISTURE DRY NO. feet CONTENT, % DENSITY, pcf DENSITY, pcf 1 2.0 - 2.5 13.4 135.4 119.4 2 2.5 - 3.0 13.8 137.8 121.1 3 14.2 116.9 2.5 - 3.0 133.6 4 2.5 - 3.0 16.1 134.9 116.2 5 2.5 - 3.0 118.3 14.5 135.4 6 2.5 - 3.0 121.5 13.3 137.7 7 2.0 - 2.5 138.2 121.9 13.3 8 2.0 - 2.5 4.7 123.7 118.1 9 2.5 - 3.0 19.7 122.8 102.6 10 2.5 - 3.0 13.6 130.6 115.0 104.0 2.5 - 3.0 11 21.5 126.3 95.5 12 2.5 - 3.0 24.8 119.2 22.0 13 2.5 - 3.0 123.5 101.2 125.1 102.5 14 2.5 - 3.0 22.0 15 2.5 - 3.0 23.4 123.5 100.1 130.0 109.3 16 2.5 - 3.0 19.0 17 2.5 - 3.0 20.8 104.8 126.7 18 2.5 - 3.0 20.1 124.0 103.2 19 2.5 - 3.0 16.9 132.5 113.4 20 2.5 - 3.0 17.6 131.3 111.7 21 2.5 - 3.0 13.9 136.1 119.5 22 3.0 - 3.5 17.6 134.1 114.0 23 2.5 - 3.0 13.8 134.8 118.5 24 2.5 - 3.0 5.6 113.1 107.2 25 2.5 - 3.0 19.0 126.5 106.3 26 3.0 - 3.5 17.1 128.9 110.1 27 3.0 - 3.5 20.8 117.6 97.4 28 2.5 - 3.0 128.6 122.5 4.9 29 2.5 - 3.0 15.3 129.7 112.5 30 2.5 - 3.0 14.7 128.7 112.2 31 2.5 - 3.0 17.2 129.6 110.6 32 2.0 - 2.5 16.3 128.8 110.8 33 2.0 - 2.5 15.5 133.1 115.3

13.7

134.6

118.4

302524-001

January 8, 2019

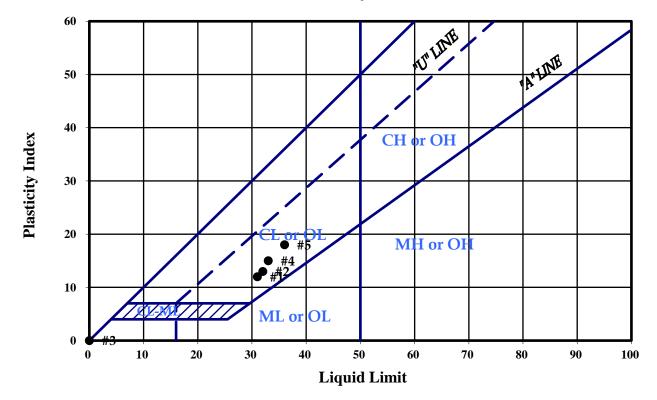
BULK DENSITY TEST RESULTS

ASTM D 2937-17 (modified for ring liners)

BORING	DEPTH	MOISTURE	WET	DRY
NO.	feet	CONTENT, %	DENSITY, pcf	DENSITY, pcf
35	2.0 - 2.5	14.6	134.1	117.0
36	2.0 - 2.5	7.2	123.0	114.7
37	2.5 - 3.0	16.2	127.9	110.1
38	2.5 - 3.0	14.7	127.2	110.9
39	2.0 - 2.5	19.1	129.1	108.4
40	2.5 - 3.0	16.2	136.0	117.1

302524-001

January 8, 2019



PLASTICITY INDEX

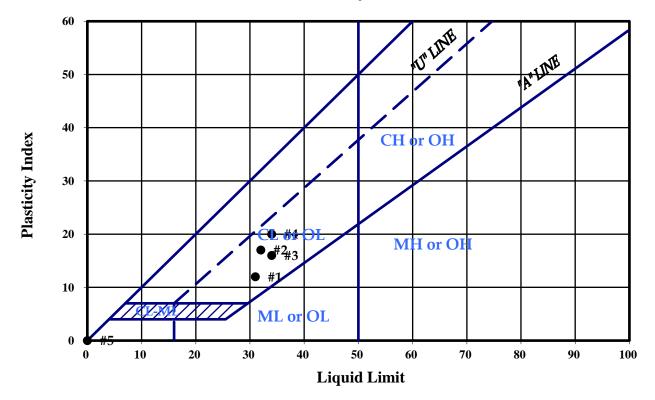
302524-001

Designation.:	CBR 1	CBR 2	CBR 4	CBR 5	CBR 7
Test No.:	1	2	3	4	5
Boring No.:	1	9	3	36	23
Sample Depth:	2.0 - 3.0'	3.0 - 5.0'	0.5 - 1.0'	2.0 - 5.0'	3.5 - 5.0'
Liquid Limit:	31	32	NL	33	36
Plastic Limit:	19	19	NP	18	18
Plasticity Index:	12	13	NP	15	18

Plasticity Chart

ASTM D 4318-17

January 8, 2019

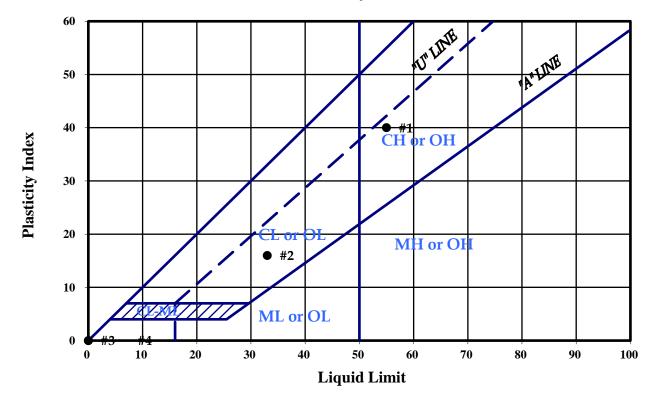

PLASTICITY INDEX

302524-001

ASTM D 4318-17 January 8, 2019

Designation.:	CBR 8	CBR 9	CBR 11	CBR 12	CBR 13
Test No.:	1	2	3	4	5
Boring No.:	29	21	16	13	40
Sample Depth:	2.0 - 5.0'	1.5 - 3.0'	2.0 - 4.0'	2.0 - 5.0'	1.5 - 3.5'
Liquid Limit:	31	32	34	34	NL
Plastic Limit:	19	15	18	14	NP
Plasticity Index:	12	17	16	20	NP

Plasticity Chart


PLASTICITY INDEX

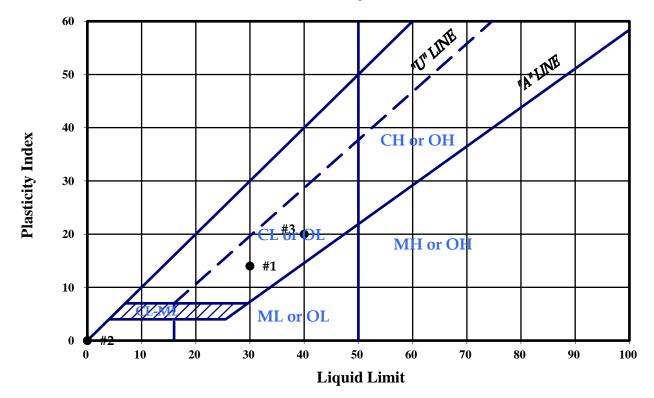
302524-001

January 8, 2019

Designation.:	CBR 14	CBR 15	CBR 16	CBR 17	
Test No.:	1	2	3	4	
Boring No.:	39	17	28	14	
Sample Depth:	2.0 - 5.0'	0.5 - 1.5'	0.5 - 1.5'	0.5 - 1.5'	
Liquid Limit:	55	33	NL	NL	
Plastic Limit:	15	17	NP	NP	
Plasticity Index:	40	16	NP	NP	

Plasticity Chart

PLASTICITY INDEX


302524-001

ASTM D 4318-17

January 8, 2019

Designation.:		CBR 3	CBR 6	
Test No.:	1	2	3	
Boring No.:	9	5	27	
Sample Depth:	0.5 - 1.5'	2.0 - 4.0'	0.5 - 1.5'	
Liquid Limit:	30	NL	40	
Plastic Limit:	16	NP	20	
Plasticity Index:	14	NP	20	

Plasticity Chart

PARTICLE SIZE ANALYSIS

CBR #1; Boring #1 @ 2.0 - 5.0' Sandy Lean Clay (CL) LL = 31; PL = 19; PI = 12 302524-001

ASTM D 422-63/07

January 8, 2019

Specific Gravity = 2.70 (assumed) Gravel = 0%; Sand = 43%; Silt = 36%; Clay = 21%

Sieve size		% Retai	ned	% Passi	ng
1-1/2" (37.5-	mm)	0		100	
1" (25.0-mm)	0		100	
3/4" (19.0-m	m)	0		100	
1/2" (12.5-m	m)	0		100	
3/8" (9.5-mn	n)	0		100	
#4 (4.75-mm)	0		100	
#8 (2.36-mm)	0		100	
#16 (1.18-mr		0		100	
#30 (600-μm)	0		100	
#50 (300-μm		4		96	
#100 (150-μr		22		78	
#200 (75-μm		43		57	
Hydromet	er Analysis				
45-µm				39	
32-µm				34	
21-μm				29	
12-μm				26	
9-μm				24	
5.2-μm				21	
3.2-μm				18	
Colloids				15	
	. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE			10
U	1.5 1 0.75 0.50.375 4	0. S. STANDARD SIEVE 8 16 30	50 100 200	HYDROMETER ANALYS	15
100 -		8 10 30		·····	········
90					
. 80					
S 70					
$\mathbf{\tilde{s}}$					
SA 90					
50 E					
E 40					
ğ 30					
د 20					
10					
0					
100	10	1	0.1	0.01	0.001

GRAIN SIZE, mm

PARTICLE SIZE ANALYSIS

CBR #2; Boring #9 @ 3.0 - 5.0' Sandy Lean Clay (CL) LL = 32; PL = 19; PI = 13 302524-001

ASTM D 422-63/07 January 8, 2019

Specific Gravity = 2.70 (assumed) Gravel = 0%; Sand = 40%; Silt = 30%; Clay = 30%

Sieve size	% Retained	% Passing	
1-1/2" (37.5-mm)	0	100	
1" (25.0-mm)	0	100	
3/4" (19.0-mm)	0	100	
1/2" (12.5-mm)	0	100	
3/8" (9.5-mm)	0	100	
#4 (4.75-mm)	0	100	
#8 (2.36-mm)	3	97	
#16 (1.18-mm)	8	92	
#30 (600-μm)	13	87	
#50 (300-μm)	19	81	
#100 (150-μm)	28	72	
#200 (75-μm)	40	60	
Hydrometer Analysis			
44-µm		49	
32-µm		45	
21-µm		40	
12-μm		36	
9-μm		34	
5.1-μm		30	
3.1-μm		26	
Colloids		20	
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS	
1.5 1 0.75 0.50.375 4	8 16 30 50 100 200		
100			
90			
80 80			
70 -			
6 0 6 0			
50 50			
40 40			
30			
ž ₂₀			
10			
0			
100 10	1 0.1	0.01 0.001	
	GRAIN SIZE, mm		

Oxnard Airport - Runway and Taxiway Rehabilitation / Reconstruction

PARTICLE SIZE ANALYSIS

CBR #3; Boring #5 @ 2.0 - 4.0' Silty Sand (SM) PI = NP 302524-001

ASTM D 422-63/07

January 16, 2019 Specific Gravity = 2.65 (assumed) Gravel = 4%; Sand = 54%; Silt = 28%; Clay = 14%

Sieve size	% Retained	% Passing		
1-1/2" (37.5-mm)	0	100		
1" (25.0-mm)	0	100		
3/4" (19.0-mm)	0	100		
1/2" (12.5-mm)	0	100		
3/8" (9.5-mm)	0	100		
#4 (4.75-mm)	4	96		
#8 (2.36-mm)	12	88		
#16 (1.18-mm)	21	79		
#30 (600-μm)	30	70		
#50 (300-μm)	37	63		
#100 (150-μm)	48	52		
#200 (75-μm)	58	42		
Hydrometer Analysis				
46-μm		30		
32-μm		29		
21-µm		24		
13-µm		19		
9-μm		16		
5.2-μm		14		
3.2-μm		12		
Colloids		10		
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS		
1.5 1 0.75 0.\$0.375 4	8 16 30 50 100 200	· · · · · · · · · · · · · · · · · · ·		
90				
ي ⁸⁰				
00 00 00 00 00 00 00 00 00 00 00 00 00				
Se 60				
E 50				
A0 40				
× 30				
ā ₂₀				
10				
0				
100 10	1 0.1	0.01 0.001		
	GRAIN SIZE, mm			

PARTICLE SIZE ANALYSIS

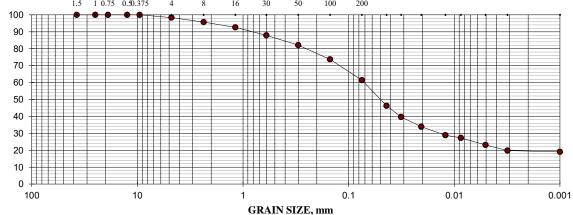
CBR #4; Boring #3 @ 0.5 - 1.0' Clayey Sand with Gravel (SC) PI = NP -----

ASTM D 422-63/07 January 8, 2019

Specific Gravity = 2.65 (assumed) Gravel = 16%; Sand = 61%; Silt = 16%; Clay = 7%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
3/4" (19.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	7	93
#4 (4.75-mm)	16	84
#8 (2.36-mm)	24	76
#16 (1.18-mm)	32	68
#30 (600-μm)	43	57
#50 (300-μm)	44	56
#100 (150-μm)	70	30
#200 (75-μm)	77	23
Hydrometer Analysis		
46-μm		15
33-µm		14
21-µm		12
13-µm		10
9-µm		8
5.3-μm		7
3.3-μm		5
Colloids		4
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375 4	8 16 30 50 100	200
90		
80		
70		
60		
50		
40 40		
70 60 50 40 30		
20		
10		
100 10	1	0.1 0.01 0.001

302524-001



PARTICLE SIZE ANALYSIS

CBR #5; Boring #36 @ 2.5 - 5.0' Sandy Lean Clay (CL) LL = 33; PL = 18; PI = 15

January 8, 2019 Specific Gravity = 2.70 (assumed) Gravel = 2%; Sand = 37%; Silt = 38%; Clay = 23%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
3/4" (19.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	0	100
#4 (4.75-mm)	2	98
#8 (2.36-mm)	4	96
#16 (1.18-mm)	7	93
#30 (600-μm)	12	88
#50 (300-μm) #100 (150 μm)	18	82
#100 (150-μm) #200 (75-μm)	26 39	74 61
	39	61
Hydrometer Analysis		
44-μm		46
32-μm		40
21-µm		34
12-μm		29
9-μm		27
5.0-μm		23
3.1-μm		20
Colloids		19
U. S. STANDARD SIEVE OPENING, in	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375 4	8 16 30 50 100 200	
100		
90		
80		
70		
60		
50		
40		
30		
20		

302524-001

ASTM D 422-63/07

PARTICLE SIZE ANALYSIS

CBR #6 with 3% Lime added; Boring #27 @ 2.0 - 4.0' Sandy Lean Clay (CL) LL = 40; PL = 20; PI = 20 302524-001

ASTM D 422-63/07

January 8, 2019 Specific Gravity = 2.70 (assumed)

Gravel = 1%; Sand = 34%; Silt = 38%; Clay = 27%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
3/4" (19.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	0	100
#4 (4.75-mm)	1	99
#8 (2.36-mm)	1	99
#16 (1.18-mm)	3	97
#30 (600-μm)	4	96
#50 (300-μm)	8	92
#100 (150-μm)	23	77
#200 (75-μm)	35	65
Hydrometer Analysis		
42-µm		56
30-µm		51
20-µm		44
12-μm		35
9-µm		30
5.0-μm		27
3.1-μm		24
Colloids		19
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.0.375 4 100 +++++++++++++++++++++++++++++++++++	8 16 30 50 100 200	<u></u>
90		
80		
00 00 00 00 00 00 00 00 00 00 00 00 00		
L C C C C C C C C C C C C C C C C C C C		
1 50		
Ž 30		
P 20		
10		
0		
100 10	1 0.1	0.01 0.001

GRAIN SIZE, mm

PARTICLE SIZE ANALYSIS

CBR #7; Boring #23 @ 3.5 - 5.0' Sandy Lean Clay (CL) LL = 36; PL = 18; PI = 18 ASTM D 422-63/07

January 8, 2019 Specific Gravity = 2.70 (assumed) Gravel = 0%; Sand = 31%; Silt = 44%; Clay = 25%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
3/4" (19.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	0	100
#4 (4.75-mm)	0	100
#8 (2.36-mm)	0	100
#16 (1.18-mm)	2	98
#30 (600-μm)	7	93
#50 (300-μm)	12	88
#100 (150-μm)	19	81
#200 (75-μm)	31	69
Hydrometer Analysis		
42-μm		52
31-µm		46
20-µm		37
12-μm		33
9-µm		29
5.0-μm		25
3.1-μm		20
Colloids		16
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375 4	8 16 30 50 100 200)
100		
90		
., 80		
70 60 50 60 50 60 30 60		
60		
50 50		
40		
20		
10		
0 +1+++++++++++++++++++++++++++++++++++		
100 10	1 0.1	0.01 0.001

PARTICLE SIZE ANALYSIS

CBR #8; Boring #29 @ 2.0 - 5.0' Sandy Lean Clay (CL) LL = 31; PL = 19; PI = 12

January 8, 2019 Specific Gravity = 2.70 (assumed) Gravel = 1%; Sand = 39%; Silt = 37%; Clay = 23%

Sieve size		% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)		0	100
3/4" (19.0-mm)		0	100
1/2" (12.5-mm)		0	100
3/8" (9.5-mm)		0	100
#4 (4.75-mm)		1	99
#8 (2.36-mm)		2	98
#16 (1.18-mm)		4	96
#30 (600-μm)		7	93
#50 (300-μm)		12	88
#100 (150-μm)		24	76
#200 (75-μm)		40	60
Hydrometer A	Analysis		
42-µm			46
31-µm			40
20-μm			34
12-μm			29
9-µm			25
5.0-μm			23
3.1-µm			18
Colloids			14
U. S. STA	ANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5	1 0.75 0.50.375 4	8 16 30 50 100	200
100			
90			
, 80			
70			
60			
50			
40			
40			
70 70 60 50 40 30			
20			
10			
0			
100	10	1	0.1 0.01 0

GRAIN SIZE, mm

ASTM D 422-63/07

PARTICLE SIZE ANALYSIS

CBR #9; Boring #21 @ 1.5 - 3.0' Sandy Lean Clay (CL) LL = 32; PL = 15; PI = 17

10

ASTM D 422-63/07

January 8, 2019 Specific Gravity = 2.70 (assumed) Gravel = 1%; Sand = 37%; Silt = 39%; Clay = 23%

0.01

0.001

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
3/4" (19.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	1	99
#4 (4.75-mm)	1	99
#8 (2.36-mm)	3	97
#16 (1.18-mm)	4	96
#30 (600-μm)	6	94
#50 (300-μm)	10	90
#100 (150-μm)	22	78
#200 (75-μm)	38	62
Hydrometer Analysis		
42-μm		46
31-μm		41
20-µm		36
12-μm		30
9-µm		26
5.0-μm		23
3.1-μm		19
Colloids		16
U. S. STANDARD SIEVE OPENING, i	. U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375	8 16 30 50 100 200	
90		
80 80		
70		
70 70 60 50 40 30		
50		
40 40		
30		
Z 20		

1

GRAIN SIZE, mm

0.1

PARTICLE SIZE ANALYSIS

CBR #11; Boring #16 @ 2.0 - 4.0' Sandy Lean Clay (CL) LL = 34; PL = 18; PI = 16

302524-001

ASTM D 422-63/07

January 8, 2019 Specific Gravity = 2.70 (assumed) Gravel = 1%; Sand = 21%; Silt = 50%; Clay = 28%

Sieve size	% Retained	% Passing	
1-1/2" (37.5-mm)	0	100	
1" (25.0-mm)	0	100	
3/4" (19.0-mm)	0	100	
1/2" (12.5-mm)	0	100	
3/8" (9.5-mm)	0	100	
#4 (4.75-mm)	1	99	
#8 (2.36-mm)	2	98	
#16 (1.18-mm)	4	96	
#30 (600-μm)	5	95	
#50 (300-μm)	7	93	
#100 (150-μm)	12	88	
#200 (75-μm)	22	78	
Hydrometer Analysis			
42-µm		51	
31-µm		45	
20-µm		40	
12-μm		36	
9-µm		31	
5.1-μm		28	
3.1-μm		24	
Colloids		19	
U. S. STANDARD SIEVE OPENING,	n. U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS	
1.5 1 0.75 0.30.375	4 8 16 30 50 100	200	
100			
90			
80			
70			
60			
50			
40			
30			
20			
10			
0			

GRAIN SIZE, mm

PARTICLE SIZE ANALYSIS

CBR #12; Boring #13 @ 2.0 - 4.0' Sandy Lean Clay (CL) LL = 34; PL = 14; PI = 20

January 8, 2019 Specific Gravity = 2.70 (assumed) Gravel = 0%; Sand = 34%; Silt = 38%; Clay = 28%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
3/4" (19.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	0	100
#4 (4.75-mm)	0	100
#8 (2.36-mm)	1	99
#16 (1.18-mm)	2	98
#30 (600-μm)	2	98
#50 (300-μm)	5	95
#100 (150-μm)	19	81
#200 (75-μm)	34	66
Hydrometer Analysis		
42-μm		54
30-µm		49
20-µm		41
12-µm		37
9-µm		33
5.1-μm		28
3.1-μm		24
Colloids		20
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375 4	8 16 30 50 100 20	00
100 9 0		
70 70		
60 60 60 F		
50 50		
70 70 60 50 40 30 30		
× 30		
ž ₂₀		
10		
100 10	1 0.1	0.01 0.001

GRAIN SIZE, mm

ASTM D 422-63/07

PARTICLE SIZE ANALYSIS

CBR #13; Boring #40 @ 1.5 - 3.5' Silty Sand (SM) PI = NP 302524-001

ASTM D 422-63/07

January 8, 2019 Specific Gravity = 2.65 (assumed) Gravel = 3%; Sand = 54%; Silt = 28%; Clay = 15%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
3/4" (19.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	0	100
#4 (4.75-mm)	3	97
#8 (2.36-mm)	9	91
#16 (1.18-mm)	19	81
#30 (600-μm)	28	72
#50 (300-μm)	37	63
#100 (150-μm)	46	54
#200 (75-μm)	57	43
Hydrometer Analysis		
45-μm		32
33-µm		28
21-µm		24
13-µm		20
9-µm		18
5.2-μm		15
3.2-μm		13
Colloids		11
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375 4	8 16 30 50 100	200
100		
90		
80		
70		
ζ · μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ.μ		
60		
60		
60 50 40		•
60 50 40		
60 50 40 30		
20		
10		
20		

PARTICLE SIZE ANALYSIS

CBR #14; Boring #39 @ 2.0 - 5.0' Sandy Fat Clay (CH) LL = 55; PL = 15; PI = 40

302524-001

January 8, 2019 Specific Gravity = 2.70 (assumed) Gravel = 0%; Sand = 34%; Silt = 36%; Clay = 30%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
3/4" (19.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	0	100
#4 (4.75-mm)	0	100
#8 (2.36-mm)	1	99
#16 (1.18-mm)	1	99
#30 (600-μm)	2	98
#50 (300-μm)	5	95
#100 (150-μm)	20	80
#200 (75-μm)	34	66
Hydrometer Analysis		
44-μm		56
32-μm		49
21-μm		44
L2-μm		39
) -μm		35
5.2-μm		30
3.2-μm		25
Colloids		21
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375 4	8 16 30 50 100	200
100		
90		
80		
70		
60		
50		
40		
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
30		
20		
20		
20	1 0.1	0.01

ASTM D 422-63/07

PARTICLE SIZE ANALYSIS

CBR #15; Boring #17 @ 0.5 - 1.5' Clayey Sand with Gravel (SC) LL = 33; PL = 17; PI = 16

ASTM D 422-63/07

January 8, 2019 Specific Gravity = 2.65 (assumed) Gravel = 41%; Sand = 46%; Silt = 9%; Clay = 4%

Sieve size			% Reta	ined		% Pass	sing
1-1/2" (37.5-mm))		0			100	
1" (25.0-mm)			4			96	
3/4" (19.0-mm)			10			90	
1/2" (12.5-mm)			20			80	
3/8" (9.5-mm)			26			74	
#4 (4.75-mm)			41			59	
#8 (2.36-mm)			52			48	
#16 (1.18-mm)			61			39	
#30 (600-μm)			68			32	
#50 (300-μm)			77			23	
#100 (150-μm)			85			15	
#200 (75-μm)			87			13	
Hydrometer A	nalvsis						
47-μm						10	
34-µm						8	
22-µm						7	
13-μm						5	
						5	
9-µm						5 4	
9-μm 5.3-μm						4	
9-µm							
9-μm 5.3-μm 3.3-μm Colloids	NDARD SIEVE OPENIN	IG, in. U	. S. STANDARD SIEV	'E NUMBERS		4 3	YSIS
9-μm 5.3-μm 3.3-μm Colloids	NDARD SIEVE OPENIN 1 0.75 0.50.375	IG, in. U 4 8	. S. STANDARD SIEV 16 30	'E NUMBERS 50 100	200	4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids υ. s. stai					200	4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids u.s.stai					200	4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids ^{1.5}					200	4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids 0. s. stai					200	4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids 0. s. stai					200	4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids 0. s. stai					200	4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids ^{1.5}					200	4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids ^{1.5}		4 8			200	4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids ^{1.5}		4 8			200	4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids U. s. stat 1.5 100 90 80 70 60 50 40		4 8				4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids U. s. stat 1.5 100 90 80 70 60 50 40 30		4 8				4 3 2	YSIS
9-μm 5.3-μm 3.3-μm Colloids u.s.stat 1.5 100 90 80 70 60 50 40 30 20		4 8				4 3 2	YSIS

PARTICLE SIZE ANALYSIS

CBR #16; Boring #28 @ 0.5 - 1.5' Silty Gravel with Sand (GM) PI = NP 502

ASTM D 422-63/07 January 8, 2019

Specific Gravity = 2.65 (assumed) Gravel = 46%; Sand = 41%; Silt = 10%; Clay = 3%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	4	96
3/4" (19.0-mm)	10	90
1/2" (12.5-mm)	22	78
3/8" (9.5-mm)	29	71
#4 (4.75-mm)	46	54
#8 (2.36-mm)	57	43
#16 (1.18-mm)	62	38
#30 (600-μm)	69	31
#50 (300-μm)	76	24
#100 (150-μm)	82	18
#200 (75-μm)	87	13
Hydrometer Analysis		
47-µm		8
34-µm		7
22-μm		6
13-μm		5
9-µm		4
5.3-μm		3
3.3-μm		2
Colloids		2
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375 4	8 16 30 50 100	200
100	•	
90		
. 80		
Descent baseline of the second		
S 60		
50 E N		
E 40		
X 30		
A 20		
10		
0		││││││││ ^{──} │─ [─] ── <mark>─</mark> ┤ ┼ ─ ─ ┼ ─
100 10		.1 0.01 0.001
	GRAIN SIZE, mm	

PARTICLE SIZE ANALYSIS

CBR #17; Boring #14 @ 0.5 - 1.5' Silty Sand with Gravel (SM) PI = NP

ASTM D 422-63/07

January 8, 2019 Specific Gravity = 2.65 (assumed) Gravel = 35%; Sand = 52%; Silt = 9%; Clay = 4%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	3	97
3/4" (19.0-mm)	7	93
1/2" (12.5-mm)	17	83
3/8" (9.5-mm)	22	78
#4 (4.75-mm)	35	65
‡8 (2.36-mm)	43	57
‡16 (1.18-mm)	51	49
‡30 (600-μm)	60	40
ŧ50 (300-μm)	70	30
‡100 (150-μm)	80	20
ŧ200 (75-μm)	87	13
Hydrometer Analysis		
		11
94-μm		9
22-μm		8
l3-μm		6
θ-μm		5
5.4-μm		4
3.4-μm		3
Colloids		2
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375 4	8 16 30 50 100	200
90		
80		
70		
60		
50		
40		
30		
20		
10		
IV		
0	· · · · · · · · · · · · · · · · · · ·	

PARTICLE SIZE ANALYSIS

Boring #7 @ 2.0 - 3.5' Sandy Lean Clay (CL) ASTM D 422-63/07

January 8, 2019 Specific Gravity = 2.70 (assumed) Gravel = 1%; Sand = 39%; Silt = 24%; Clay = 36%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
3/4" (19.0-mm)	0	100
1/2" (12.5-mm)	0	100
3/8" (9.5-mm)	0 100	
#4 (4.75-mm)	1 99	
#8 (2.36-mm)	3	97
#16 (1.18-mm)	6	94
#30 (600-μm)	8	92
#50 (300-μm)	14	86
#100 (150-μm)	29	71
#200 (75-μm)	40	60
Hydrometer Analysis		
43-µm		52
31-µm		47
20-µm		46
12-µm		44
8-μm		39
4.9-μm		36
3.0-μm		32
Colloids		29
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375 4	8 16 30 50 100	200
100		
90		
80		
70		
60 60		
50		
40		
70 60 50 40 30		
10		
100 10	1 0	.1 0.01 0.0
	GRAIN SIZE, mm	

PARTICLE SIZE ANALYSIS

Boring #9 @ 1.5 - 3.0' Sandy Lean Clay (CL) LL = 30; PL = 16; PI = 14

> 10 0

100

10

ASTM D 422-63/07

January 8, 2019 Specific Gravity = 2.70 (assumed) Gravel = 3%; Sand = 44%; Silt = 31%; Clay = 22%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
3/4" (19.0-mm)	0	100
1/2" (12.5-mm)	2	98
3/8" (9.5-mm)	2	98
#4 (4.75-mm)	3	97
#8 (2.36-mm)	3	97
#16 (1.18-mm)	4	96
#30 (600-μm)	4	96
#50 (300-μm)	8	92
#100 (150-μm)	26	74
#200 (75-μm)	47	53
Hydrometer Analysis		
45-µm		44
33-µm		37
21-µm		32
12-µm		30
9-µm		26
5.1-μm		22
3.2-μm		19
Colloids		15
U. S. STANDARD SIEVE OPENING,	n. U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375	4 8 16 30 50 100 200	
100		
90		
80 80		
70		
60		
50		
40		
70		
Ž ₂₀		

1 GRAIN SIZE, mm 0.1

0.01

0.001

PARTICLE SIZE ANALYSIS

Boring #10 @ 1.5 - 2.5' Sandy Lean Clay (CL)

> 10 0 100

10

ASTM D 422-63/07 January 8, 2019 Specific Gravity = 2.70 (assumed)

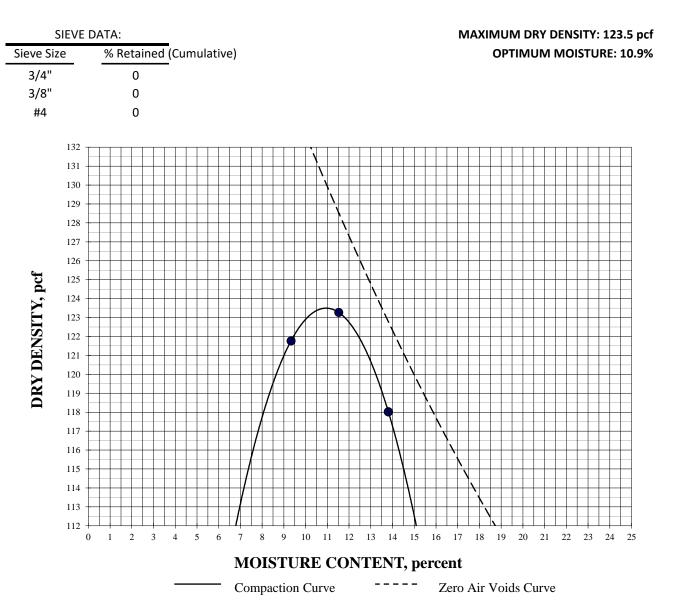
Gravel = 5%; Sand = 26%; Silt = 42%; Clay = 27%

Sieve size	% Retained	% Passing
1-1/2" (37.5-mm)	0	100
1" (25.0-mm)	0	100
3/4" (19.0-mm)	3	97
1/2" (12.5-mm)	3	97
3/8" (9.5-mm)	4	96
#4 (4.75-mm)	5	95
#8 (2.36-mm)	6	94
#16 (1.18-mm)	8	92
#30 (600-μm)	8	92
#50 (300-μm)	10	90
#100 (150-μm)	19	81
#200 (75-μm)	31	69
Hydrometer Analysis		
42-μm		46
30-µm		44
19-µm		41
12-μm		35
8-µm		30
4.9-μm		27
3.1-μm		22
Colloids		20
U. S. STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE NUMBERS	HYDROMETER ANALYSIS
1.5 1 0.75 0.50.375 4	8 16 30 50 100	200
100		
90		
80 80		
Ž 70		
S 60		
<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		
2 40 40 K		
CERCENT PACE OF CONTRACT OF CO		
Ed 20		
Pi 20		

1

GRAIN SIZE, mm

0.1

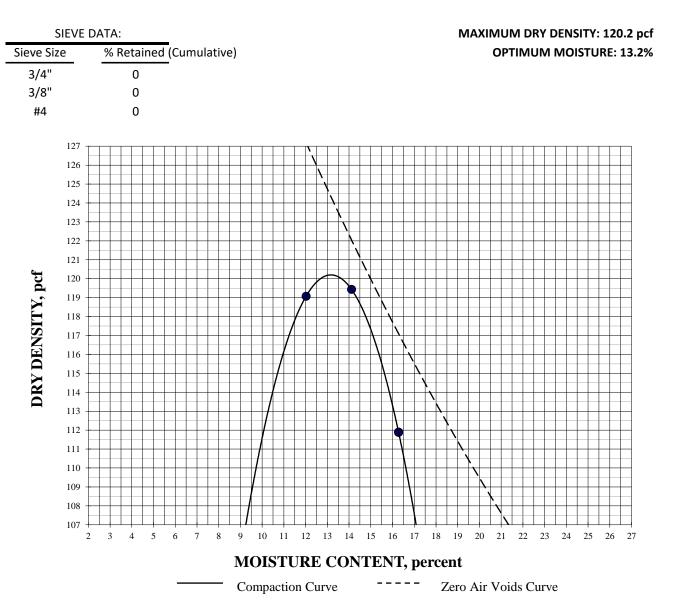

0.01

0.001

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-001

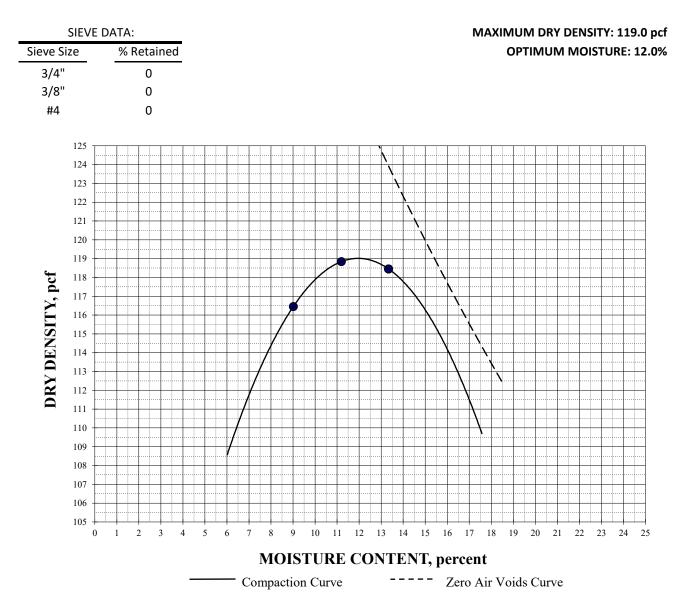

ASTM D 1557-12 (Modified) January 8, 2019

CBR #1; Boring #1 @ 2.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-001

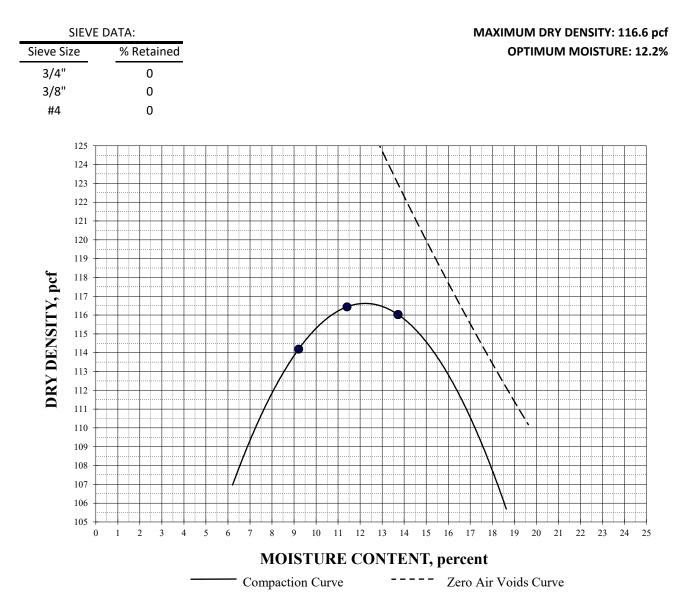

ASTM D 1557-12 (Modified)

January 8, 2019 CBR #2; Boring #9 @ 3.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-001


ASTM D 1557-12 (Modified)

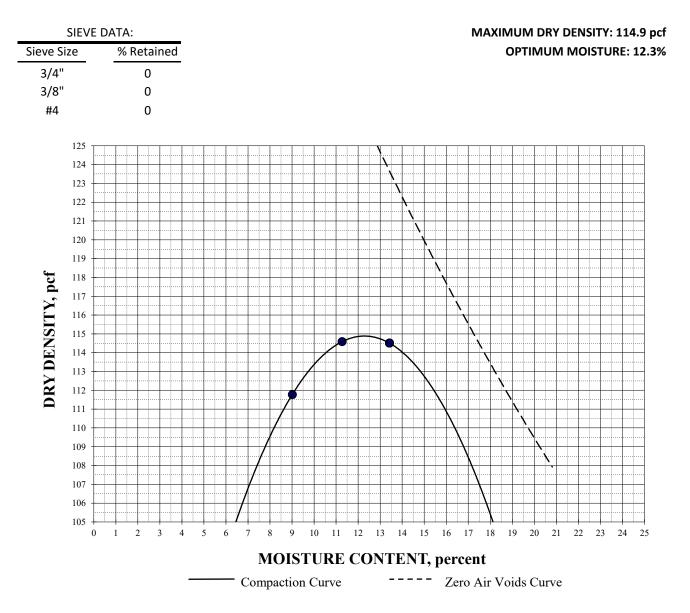
January 16, 2019 CBR #3 with 3% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

ASTM D 1557-12 (Modified)

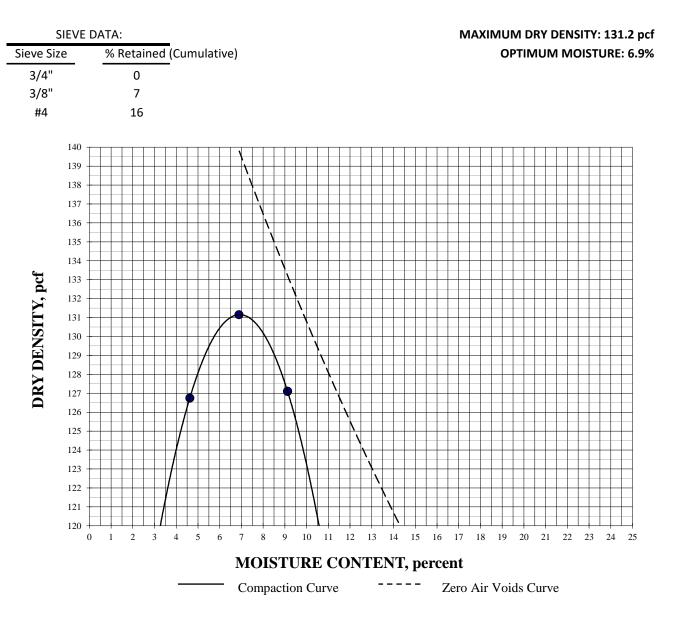
302524-001


January 16, 2019

CBR #3 with 5% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

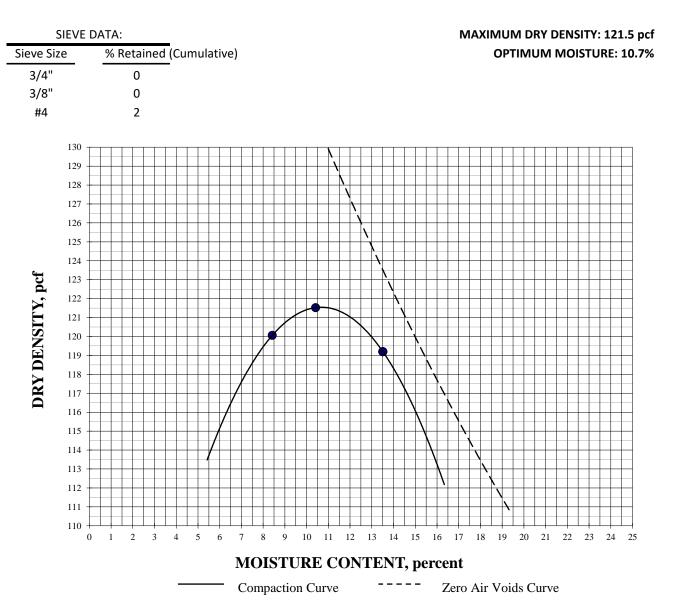

ASTM D 1557-12 (Modified)

January 16, 2019 CBR #3 with 7% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: C PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.65 (assumed)

302524-001

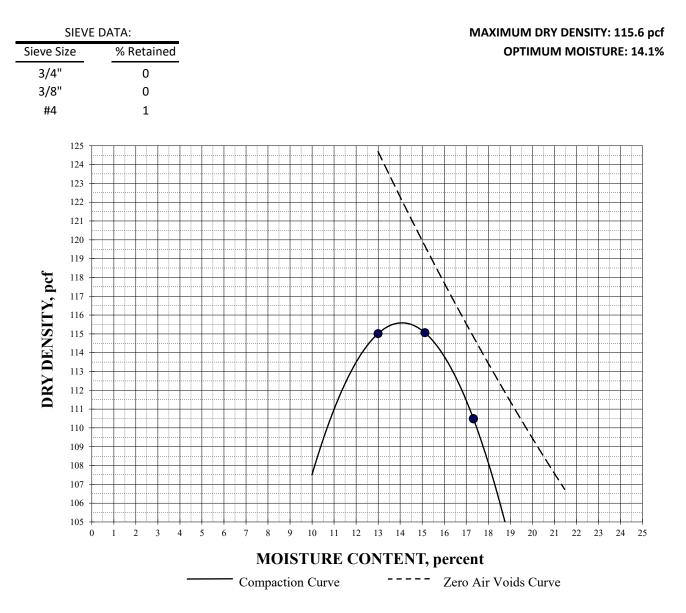

ASTM D 1557-12 (Modified)

January 8, 2019 CBR #4; Boring #3 @ 0.5 - 1.0' Brown Clayey Sand with Gravel (SC)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-001

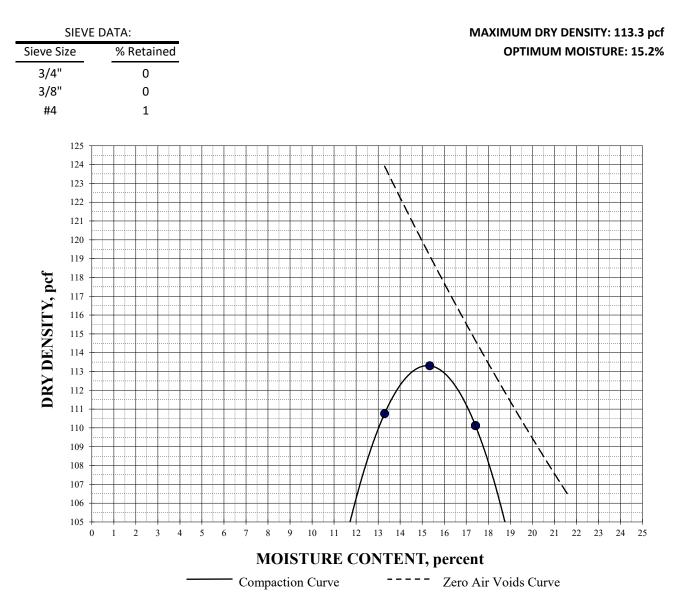

ASTM D 1557-12 (Modified)

January 8, 2019 CBR #5; Boring #36 @ 2.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

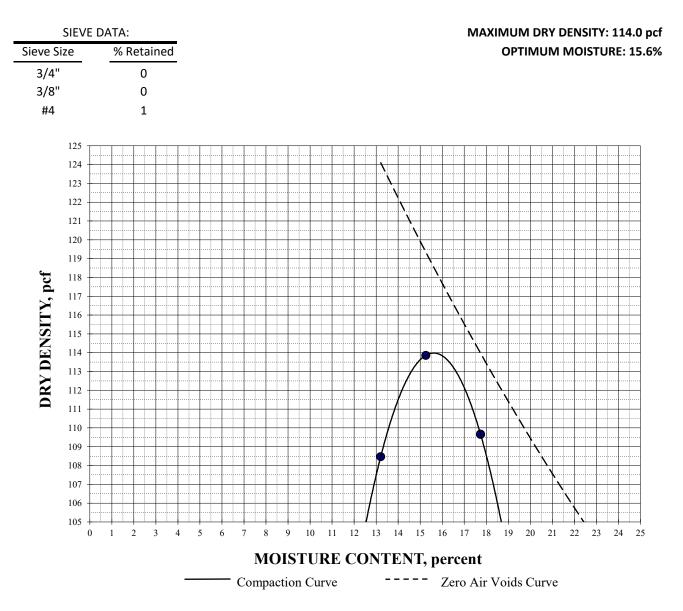
302524-001


ASTM D 1557-12 (Modified)

January 16, 2019 CBR #6 with 3% Lime added; Boring #27 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

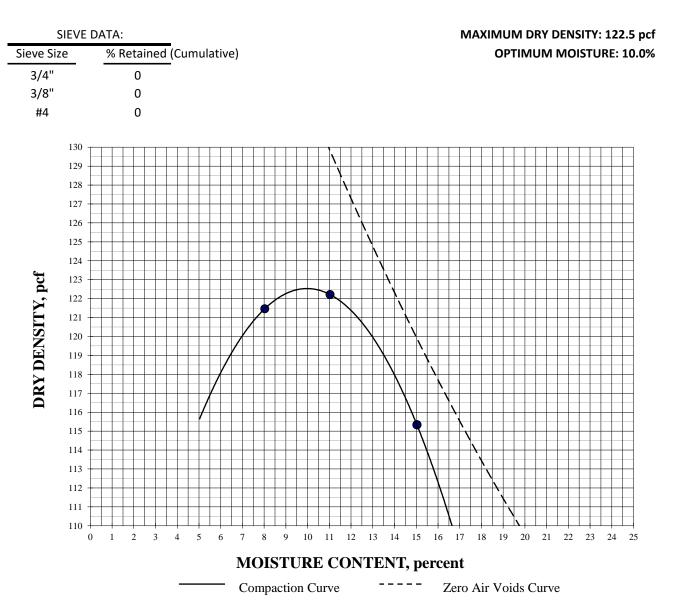

ASTM D 1557-12 (Modified)

January 16, 2019 CBR #6 with 5% Lime added; Boring #27 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

ASTM D 1557-12 (Modified)


302524-001

January 16, 2019 CBR #6 with 7% Lime added; Boring #27 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-001


ASTM D 1557-12 (Modified)

January 8, 2019 CBR #7; Boring #23 @ 3.5 - 5.0' Brown Sandy Lean Clay (CL)

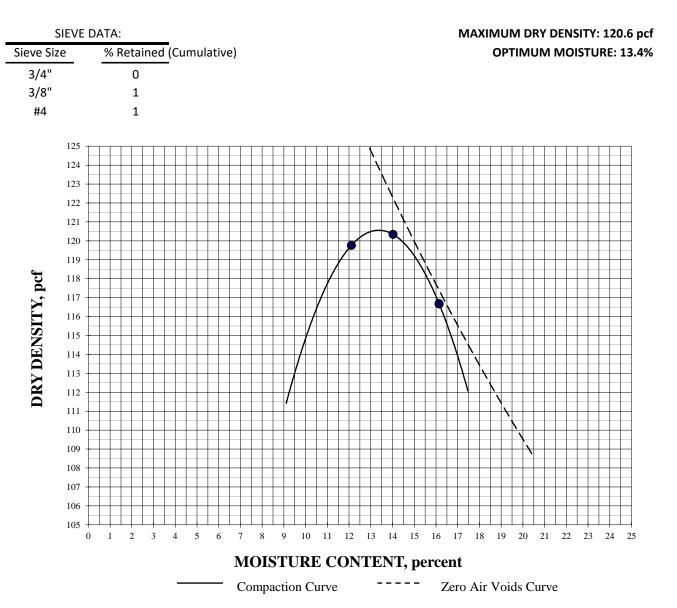
MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.65 (assumed)

302524-001

ASTM D 1557-12 (Modified)

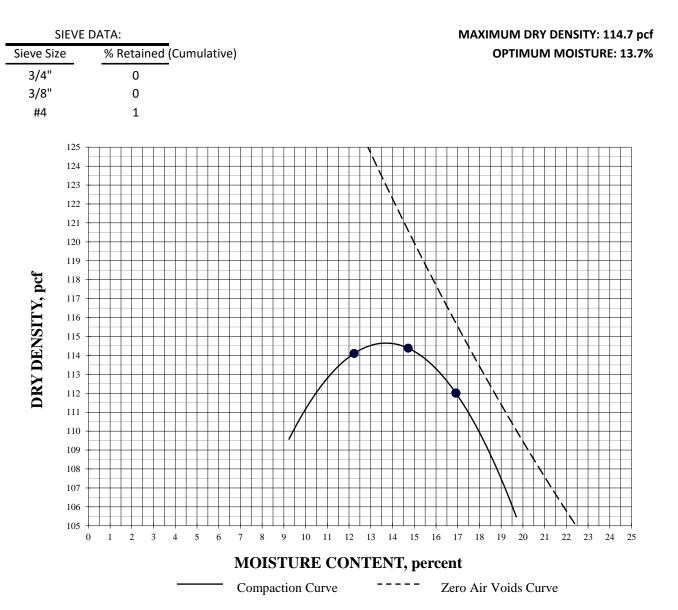
January 8, 2019


CBR #8; Boring #29 @ 2.0 - 5.0'

Brown / Gray Mottled Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

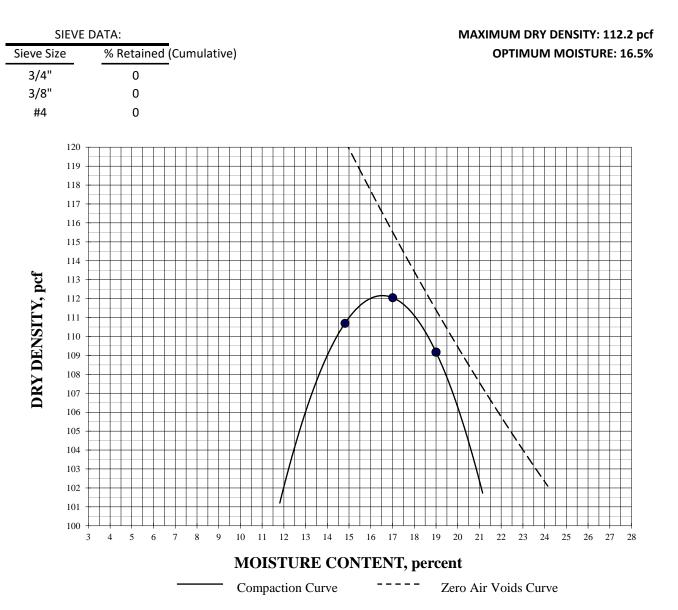

ASTM D 1557-12 (Modified)

January 8, 2019 CBR #9; Boring #21 @ 1.5 - 3.0' Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-001

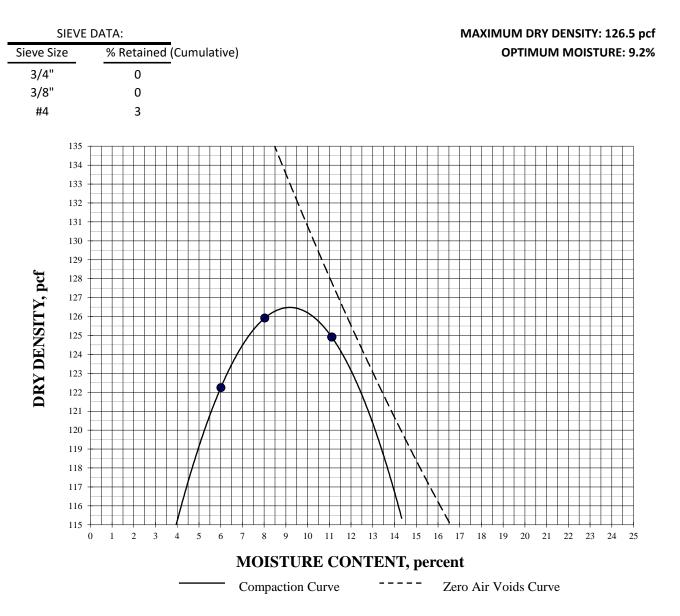

ASTM D 1557-12 (Modified)

January 8, 2019 CBR #11; Boring #16 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-001

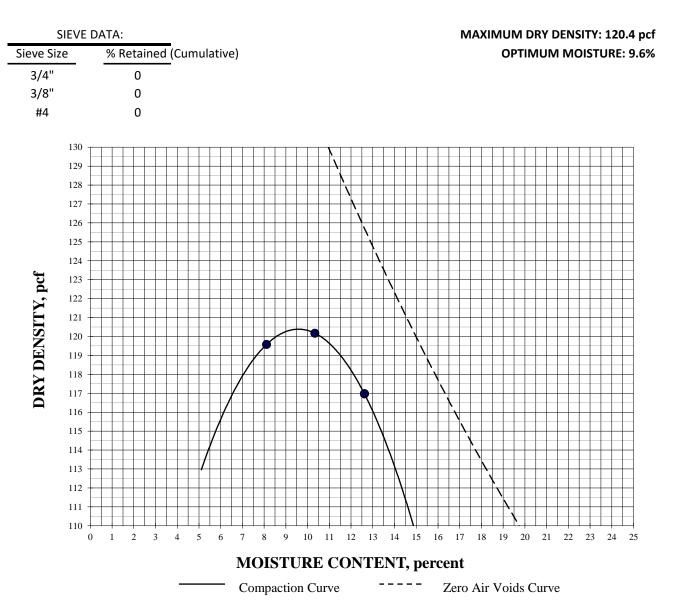

ASTM D 1557-12 (Modified)

January 8, 2019 CBR #12; Boring #13 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.65 (assumed)

302524-001

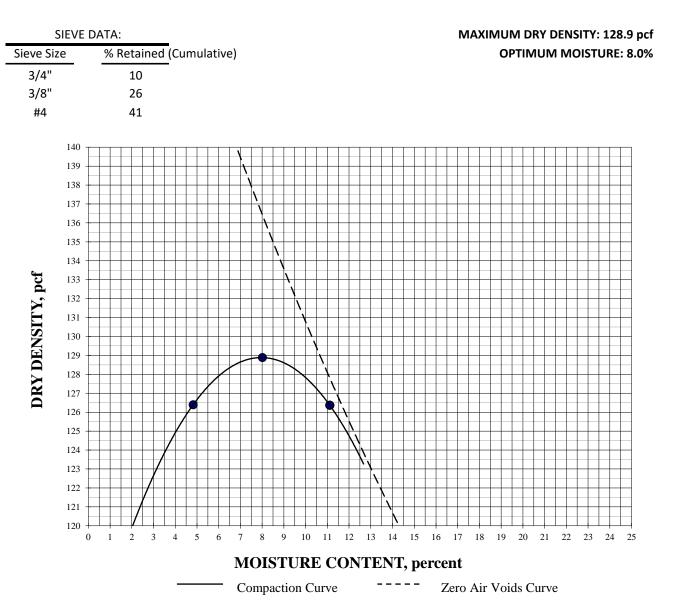

ASTM D 1557-12 (Modified)

January 8, 2019 CBR #13; Boring #40 @ 1.5 - 3.5' Brown Silty Sand (SM)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-001

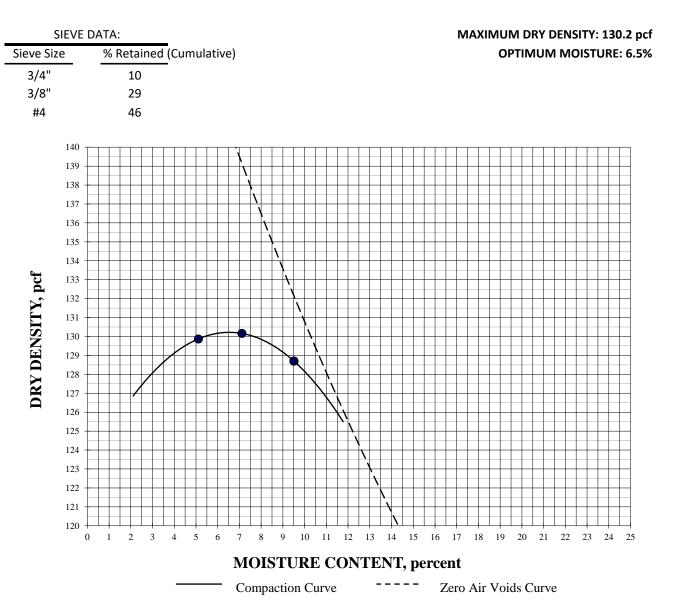

ASTM D 1557-12 (Modified)

January 8, 2019 CBR #14; Boring #39 @ 2.0 - 5.0' Brown Sandy Fat Clay (CH)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: C PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.65 (assumed)

302524-001

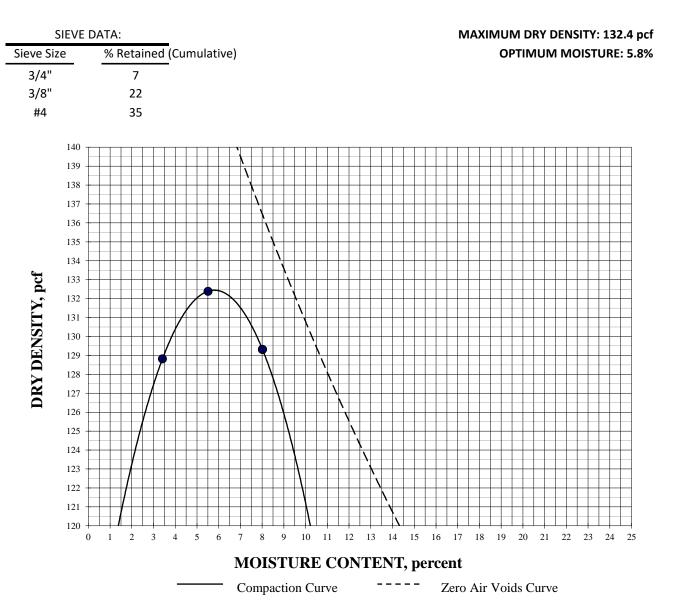

ASTM D 1557-12 (Modified)

January 8, 2019 CBR #15; Boring #17 @ 0.5 - 1.5' Brown Clayey Sand with Gravel (SC)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: C PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.65 (assumed)

302524-001


ASTM D 1557-12 (Modified)

January 8, 2019 CBR #16; Boring #28 @ 0.5 - 1.5' Brown Silty Gravel with Sand (GM)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: C PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.65 (assumed)

302524-001

ASTM D 1557-12 (Modified)

January 8, 2019 CBR #17; Boring #14 @ 0.5 - 1.5' Brown Silty Sand with Gravel (SM)

CALIFORNIA BEARING RATIO

CBR #1; Boring #1 @ 2.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

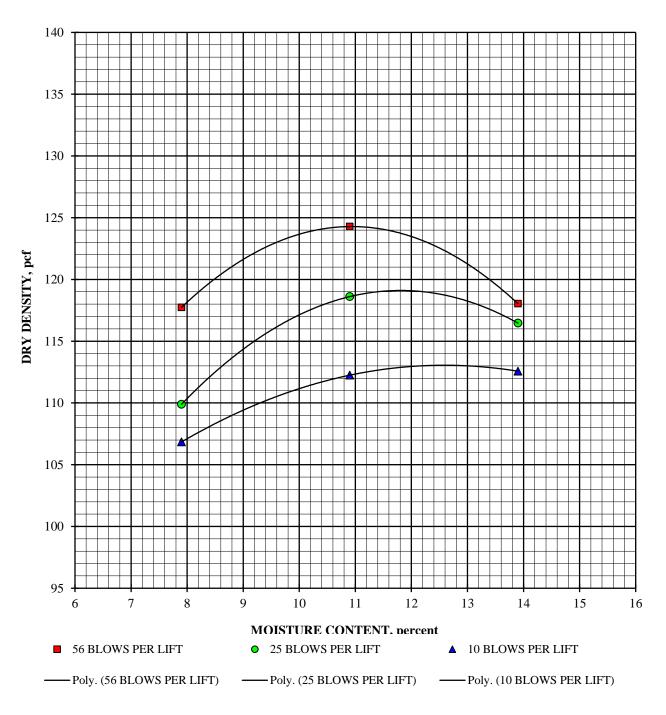
10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	106.8	112.2	112.6
Moisture content, %, before soak	7.9	10.9	13.9
Moisture content, %, after soak, avg.	15.3	16.8	18.8
Moisture content, %, after soak, top 1"	20.3	17.7	16.8
Expansion, %, 96 hour soak	1.9	0.1	0.2
Bearing Ratio, 0.100" penetration	2.9	8.7	3.4

25 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	109.9	118.6	116.5
Moisture content, %, before soak	7.9	10.9	13.9
Moisture content, %, after soak, avg.	13.7	14.4	16.5
Moisture content, %, after soak, top 1"	18.6	16.5	14.2
Expansion, %, 96 hour soak	1.6	0.2	0.1
Bearing Ratio, 0.100" penetration	6.9	23.8	7.1

56 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	117.7	124.3	118.0
Moisture content, %, before soak	7.9	10.9	13.9
Moisture content, %, after soak, avg.	14.3	12.4	14.1
Moisture content, %, after soak, top 1"	15.7	13.0	14.0
Expansion, %, 96 hour soak	1.0	0.0	0.0
Bearing Ratio, 0.100" penetration	21.3	32.3	4.7

ASTM D 1883-16 (For a Range of Moisture Contents)

302524-001

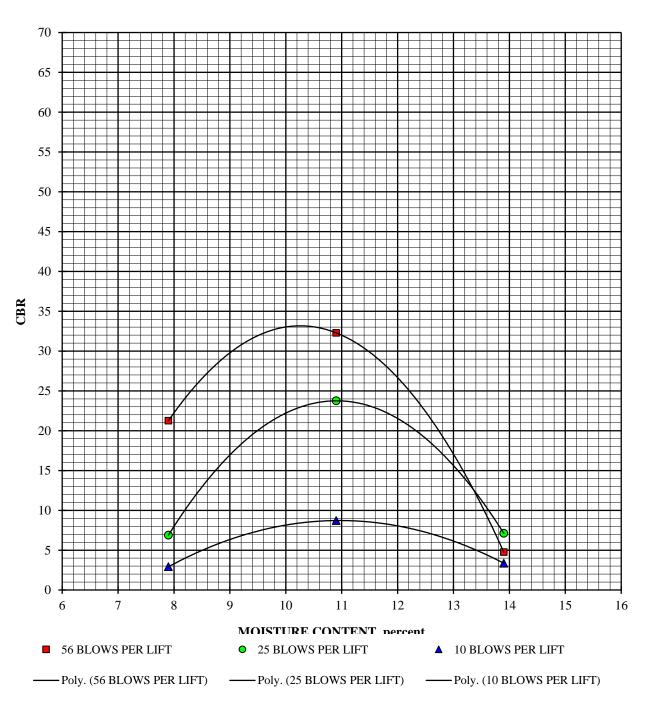

January 8, 2019

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #1; Boring #1 @ 2.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. MOISTURE CONTENT

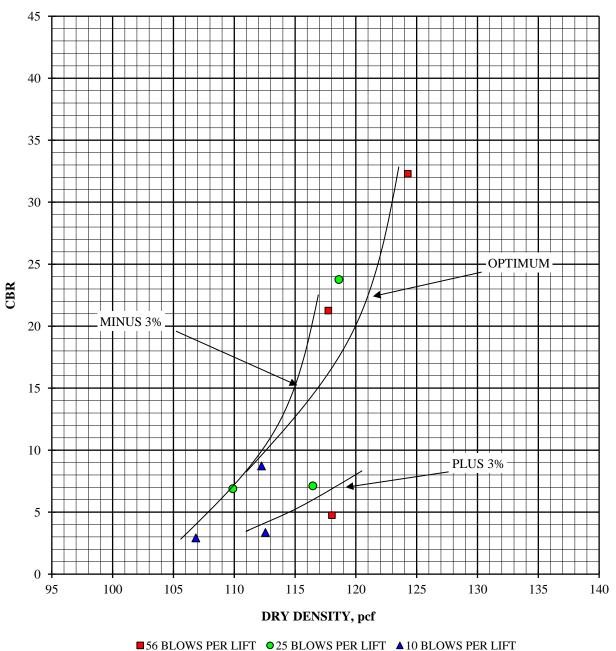

302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #1; Boring #1 @ 2.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT


302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #1; Boring #1 @ 2.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. CBR

Arranged According to Moisture Content

302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

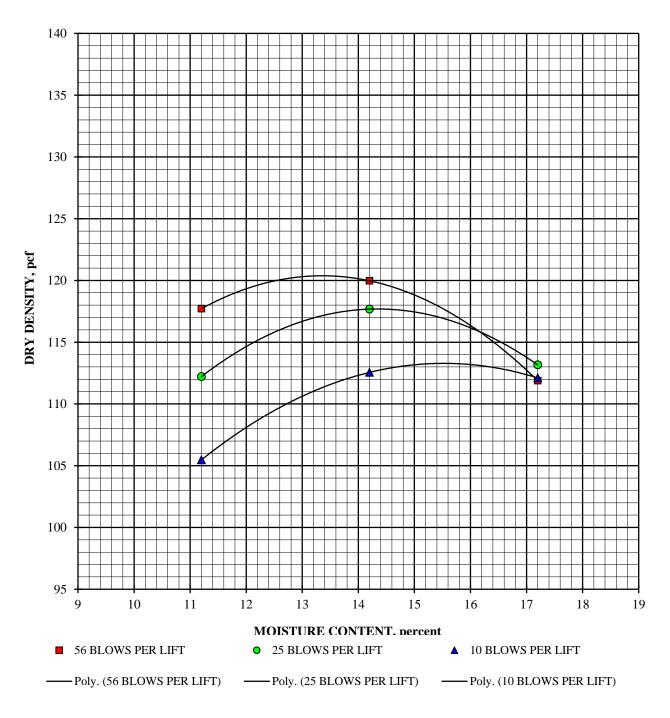
CBR#2; Boring #9 @ 3.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

	10 BLOWS PER LIFT	-	
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	105.5	112.6	112.1
Moisture content, %, before soak	11.2	14.2	17.2
Moisture content, %, after soak, avg.	21.9	17.8	19.8
Moisture content, %, after soak, top 1"	21.7	20.4	17.8
Expansion, %, 96 hour soak	1.6	0.7	0.0
Bearing Ratio, 0.100" penetration	3.2	9.1	4.1

	25 BLOWS PER LIFT	r	
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	112.2	117.7	113.2
Moisture content, %, before soak	11.2	14.2	17.2
Moisture content, %, after soak, avg.	19.9	16.0	18.2
Moisture content, %, after soak, top 1"	20.3	16.8	17.3
Expansion, %, 96 hour soak	0.9	0.0	0.0
Bearing Ratio, 0.100" penetration	7.6	11.9	4.3

	56 BLOWS PER LIFT		
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	117.7	120.0	111.9
Moisture content, %, before soak	11.2	14.2	17.2
Moisture content, %, after soak, avg.	19.0	15.5	18.1
Moisture content, %, after soak, top 1"	17.4	14.7	16.4
Expansion, %, 96 hour soak	1.1	0.4	0.0
Bearing Ratio, 0.100" penetration	9.1	14.9	3.4

302524-001

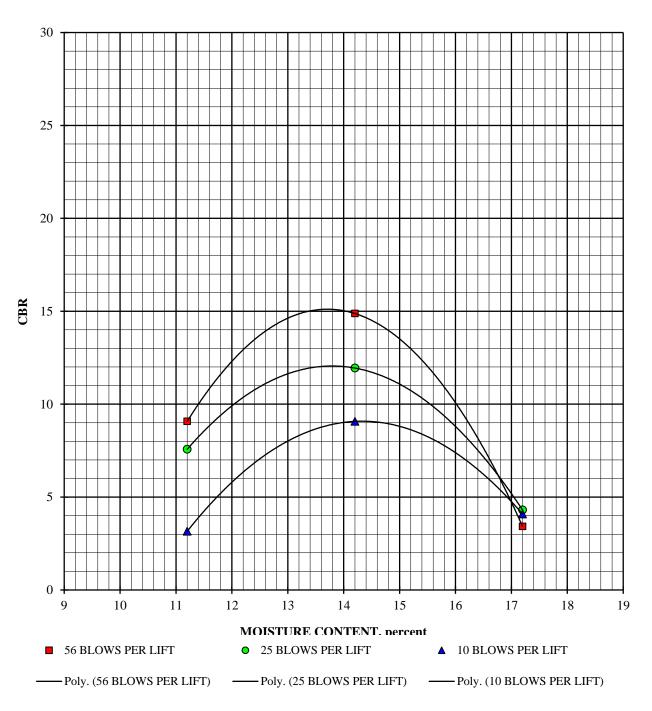

January 8, 2019

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #2; Boring #9 @ 3.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

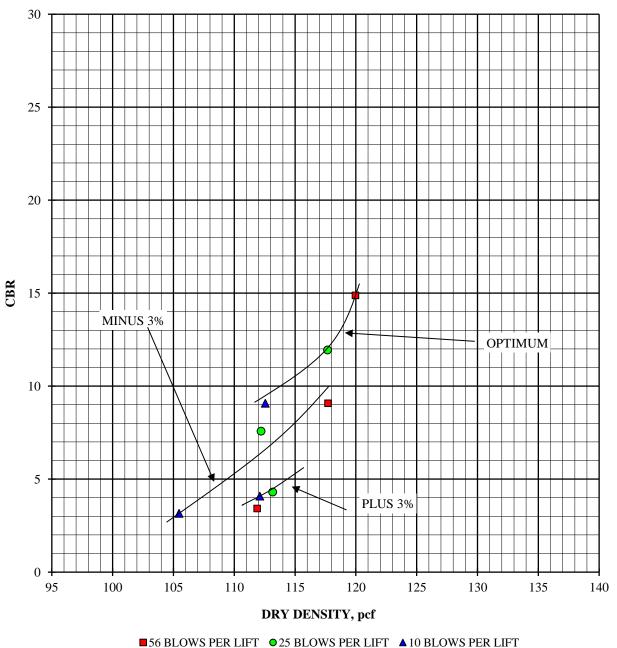
DRY DENSITY vs. MOISTURE CONTENT


302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #2; Boring #9 @ 3.0 - 5.0' Dark Brown Sandy Lean Clay (CL)


CBR vs. MOISTURE CONTENT

302524-001

CALIFORNIA BEARING RATIO

CBR #2; Boring #9 @ 3.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. CBR

Arranged According to Moisture Content

302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #3 with 3% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM)

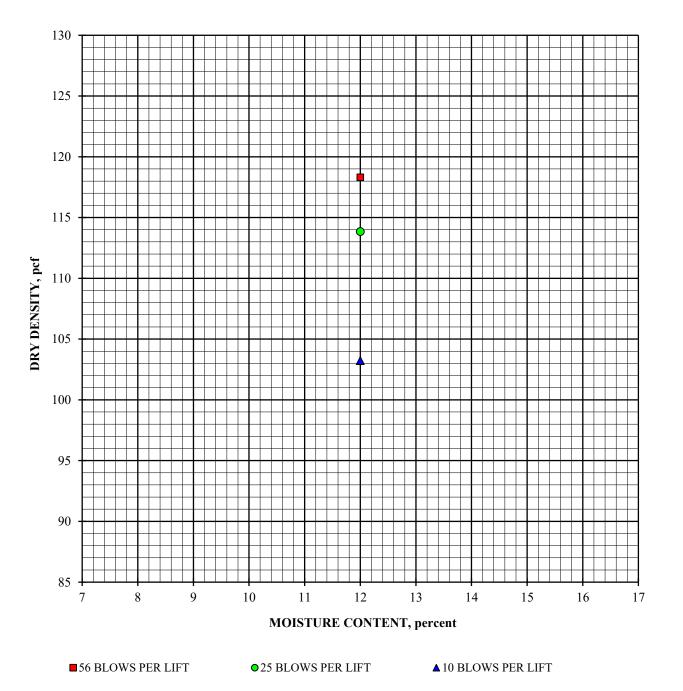
10 BLOV	NS PER LIFT
	Optimum Moisture
Dry density, pcf, before soak	103.2
Moisture content, %, before soak	12.0
Moisture content, %, after soak, avg.	20.3
Moisture content, %, after soak, top 1"	23.4
Expansion, %, 96 hour soak	0.0
Bearing Ratio, 0.100" penetration	17.4

25 BLOWS PER LIFT

	Optimum Moisture
Dry density, pcf, before soak	113.8
Moisture content, %, before soak	12.0
Moisture content, %, after soak, avg.	14.3
Moisture content, %, after soak, top 1"	19.5
Expansion, %, 96 hour soak	0.0
Bearing Ratio, 0.100" penetration	53.6

56 BLOWS PER LIFT

	Optimum Moisture
Dry density, pcf, before soak	118.3
Moisture content, %, before soak	12.0
Moisture content, %, after soak, avg.	13.2
Moisture content, %, after soak, top 1"	19.0
Expansion, %, 96 hour soak	0.2
Bearing Ratio, 0.100" penetration	78.1


302524-001

January 16, 2019

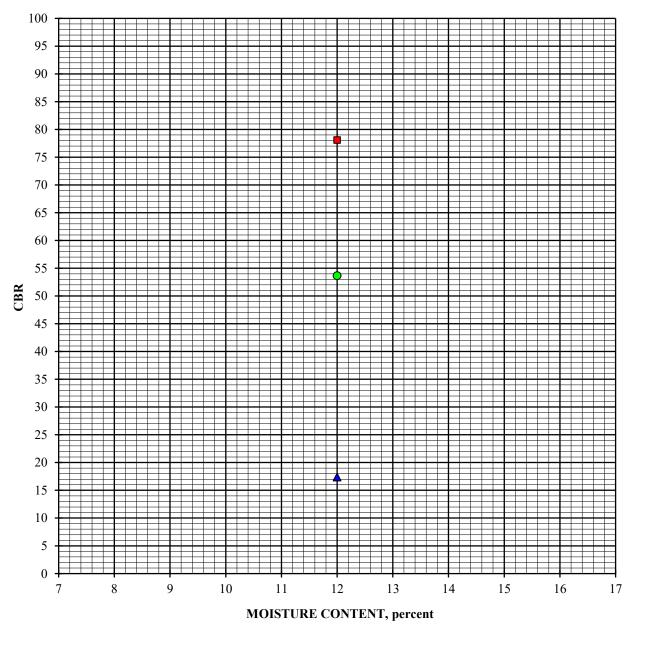
CALIFORNIA BEARING RATIO

CBR #3 with 3% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM)

DRY DENSITY vs. MOISTURE CONTENT

302524-001

January 16, 2019


ASTM D 1883-07 (At Optimum Moisture Content)

CALIFORNIA BEARING RATIO

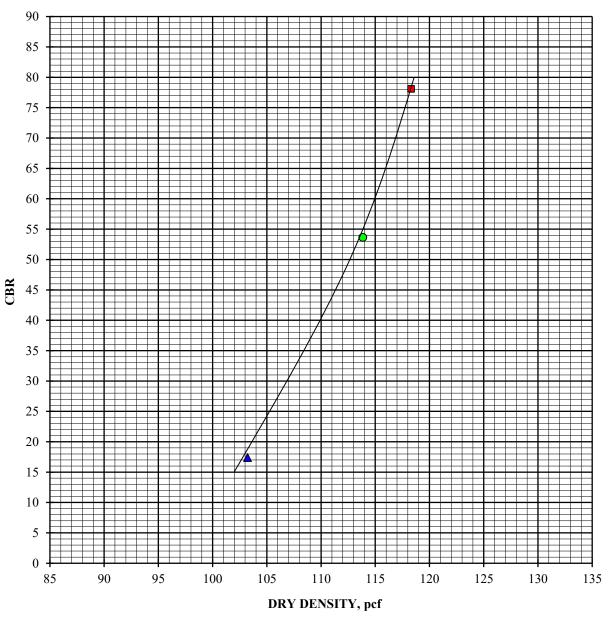
CBR #3 with 3% Lime added; Boring #5 @ 2.0 - 4.0'

Dark Brown Silty Sand (SM)

CBR vs. MOISTURE CONTENT

302524-001

January 16, 2019


ASTM D 1883-07 (At Optimum Moisture Content)

■ 56 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

CBR #3 with 3% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM)

DRY DENSITY vs. CBR AT Optimum Moisture Content 302524-001

January 16, 2019

ASTM D 1883-07 (At Optimum Moisture Content)

■ 56 BLOWS PER LIFT ● 25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

CBR #3 with 5% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM) 302524-001

ASTM D 1883-07 (At Optimum Moisture Content)

January 16, 2019

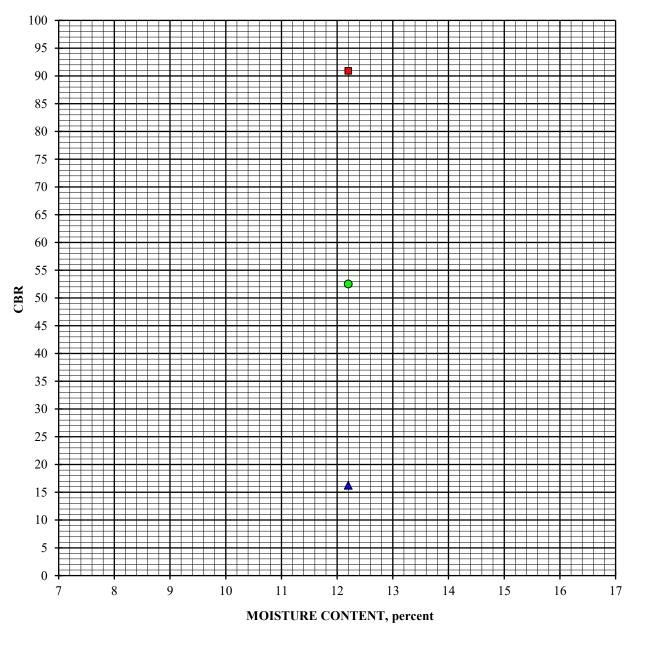
	Optimum Moisture
Dry density, pcf, before soak	99.0
Moisture content, %, before soak	12.2
Moisture content, %, after soak, avg.	24.1
Moisture content, %, after soak, top 1"	23.1
Expansion, %, 96 hour soak	0.0
Bearing Ratio, 0.100" penetration	16.3

10 BLOWS PER LIFT

25 BLOWS PER LIFT

	Optimum Moisture
Dry density, pcf, before soak	106.8
Moisture content, %, before soak	12.2
Moisture content, %, after soak, avg.	14.3
Moisture content, %, after soak, top 1"	19.9
Expansion, %, 96 hour soak	0.0
Bearing Ratio, 0.100" penetration	52.5

56 BLOWS PER LIFT


	Optimum Moisture
Dry density, pcf, before soak	115.2
Moisture content, %, before soak	12.2
Moisture content, %, after soak, avg.	13.5
Moisture content, %, after soak, top 1"	18.3
Expansion, %, 96 hour soak	0.1
Bearing Ratio, 0.100" penetration	90.9

CALIFORNIA BEARING RATIO

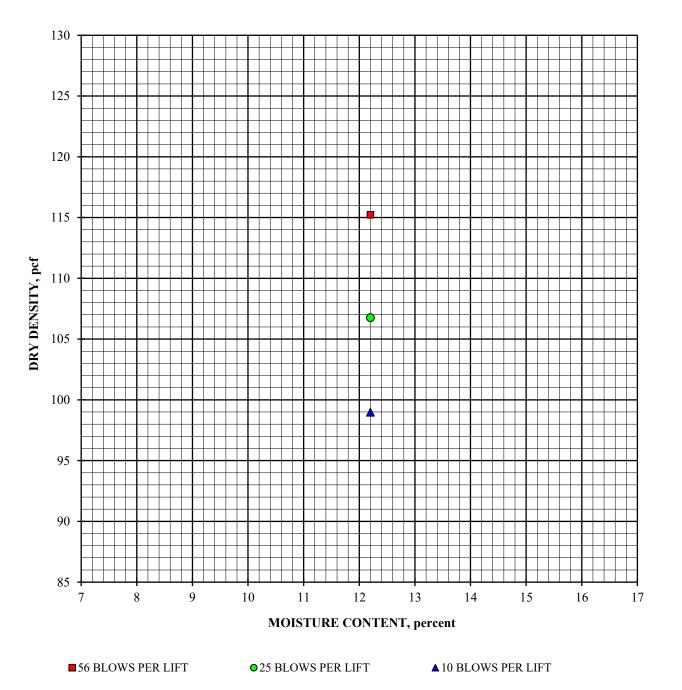
CBR #3 with 5% Lime added; Boring #5 @ 2.0 - 4.0'

Dark Brown Silty Sand (SM)

CBR vs. MOISTURE CONTENT

302524-001

January 16, 2019


ASTM D 1883-07 (At Optimum Moisture Content)

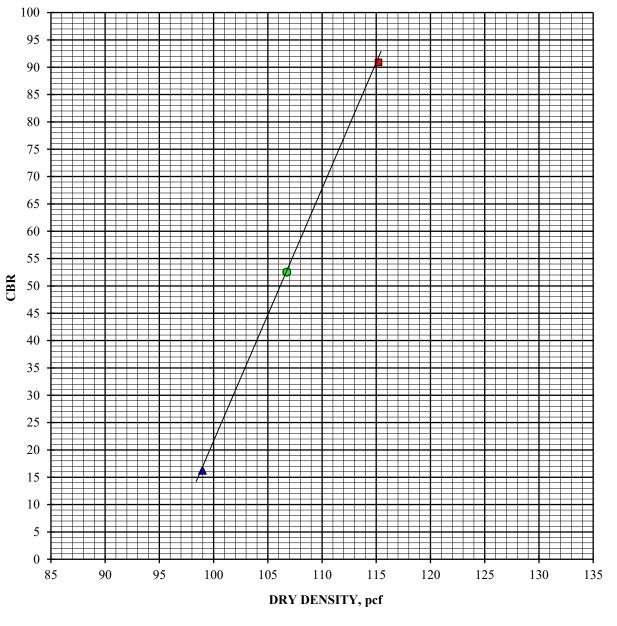
■ 56 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

CBR #3 with 5% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM)

DRY DENSITY vs. MOISTURE CONTENT

302524-001


January 16, 2019

ASTM D 1883-07 (At Optimum Moisture Content)

CALIFORNIA BEARING RATIO

CBR #3 with 5% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM)

DRY DENSITY vs. CBR AT Optimum Moisture Content

302524-001

January 16, 2019

ASTM D 1883-07 (At Optimum Moisture Content)

CALIFORNIA BEARING RATIO

Expansion, %, 96 hour soak

Bearing Ratio, 0.100" penetration

CBR #3 with 7% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM)

	10 BLOWS PER LIFT	
	Optimum Moisture	_
Dry density, pcf, before soak	97.2	
Moisture content, %, before soak	12.3	
Moisture content, %, after soak, avg.	25.3	
Moisture content, %, after soak, top 1"	24.6	

25 BLOWS PER LIFT

	Optimum Moisture
Dry density, pcf, before soak	103.2
Moisture content, %, before soak	12.3
Moisture content, %, after soak, avg.	16.3
Moisture content, %, after soak, top 1"	22.4
Expansion, %, 96 hour soak	0.2
Bearing Ratio, 0.100" penetration	35.3

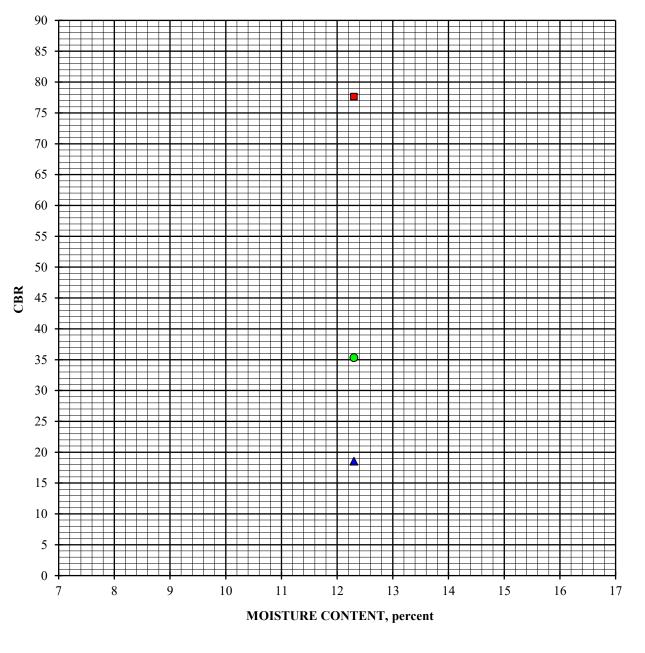
56 BLOWS PER LIFT

	Optimum Moisture
Dry density, pcf, before soak	111.9
Moisture content, %, before soak	12.3
Moisture content, %, after soak, avg.	13.6
Moisture content, %, after soak, top 1"	19.6
Expansion, %, 96 hour soak	0.5
Bearing Ratio, 0.100" penetration	77.6

302524-001

0.1

18.5


January 16, 2019

CALIFORNIA BEARING RATIO

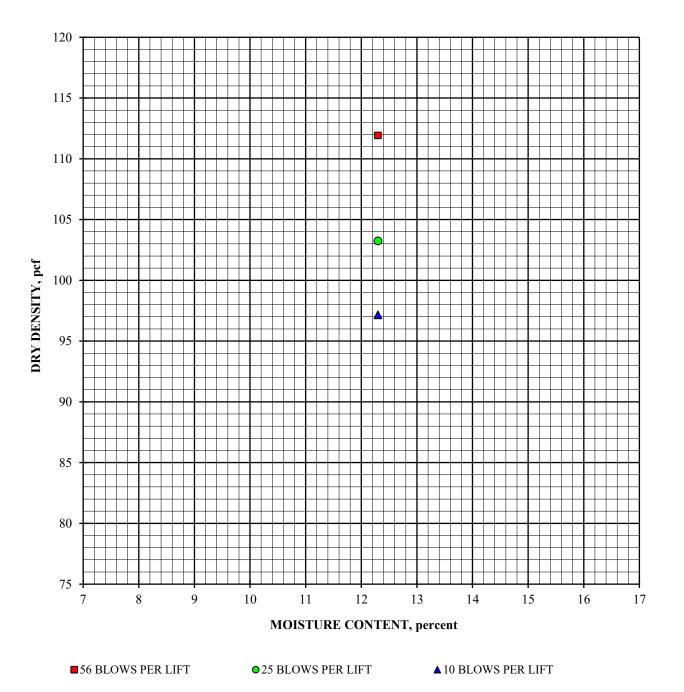
CBR #3 with 7% Lime added; Boring #5 @ 2.0 - 4.0'

Dark Brown Silty Sand (SM)

CBR vs. MOISTURE CONTENT

302524-001

January 16, 2019


ASTM D 1883-07 (At Optimum Moisture Content)

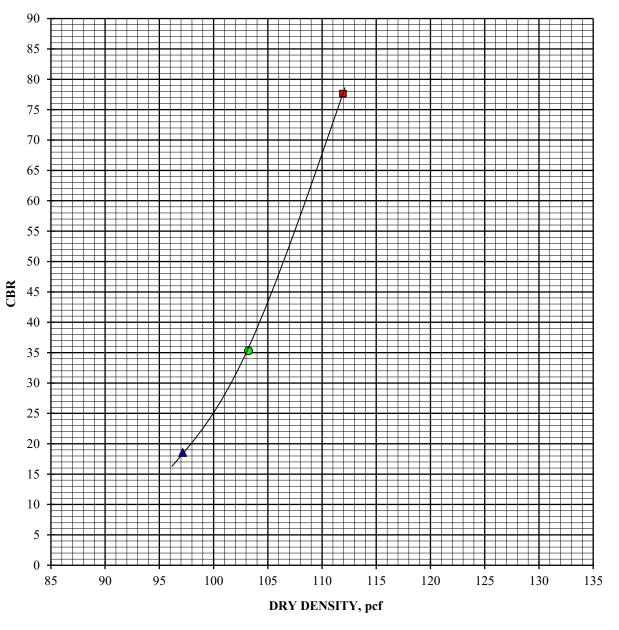
■ 56 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

CBR #3 with 7% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM)

DRY DENSITY vs. MOISTURE CONTENT

302524-001


January 16, 2019

ASTM D 1883-07 (At Optimum Moisture Content)

CALIFORNIA BEARING RATIO

CBR #3 with 7% Lime added; Boring #5 @ 2.0 - 4.0' Dark Brown Silty Sand (SM)

DRY DENSITY vs. CBR AT Optimum Moisture Content 302524-001

January 16, 2019

ASTM D 1883-07 (At Optimum Moisture Content)

■ 56 BLOWS PER LIFT ● 25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

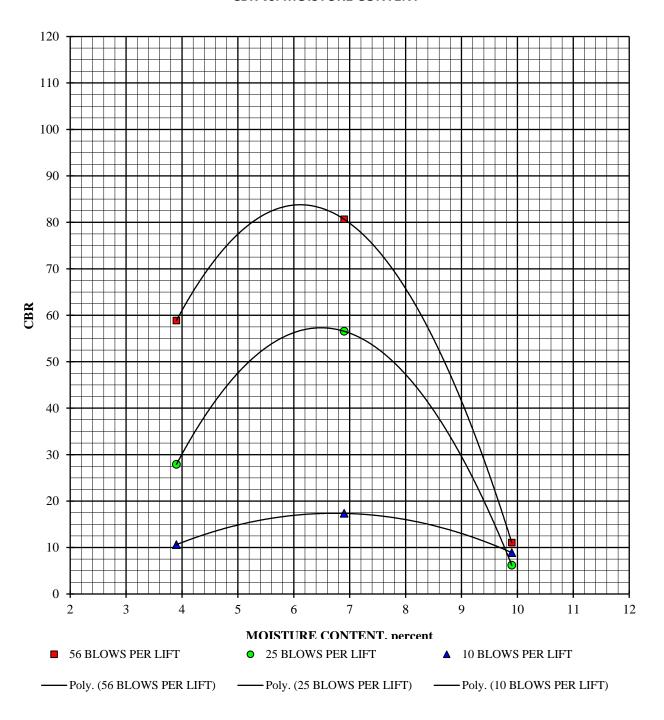
CALIFORNIA BEARING RATIO

CBR #4; Boring #3 @ 0.5 - 1.0' Brown Clayey Sand with Gravel (SC)

10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	121.6	124.2	124.9
Moisture content, %, before soak	3.9	6.9	9.9
Moisture content, %, after soak, avg.	10.6	13.7	12.2
Moisture content, %, after soak, top 1"	11.8	9.4	10.0
Expansion, %, 96 hour soak	0.9	0.1	0.1
Bearing Ratio, 0.100" penetration	10.6	17.4	8.9

25 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	125.1	129.2	125.8
Moisture content, %, before soak	3.9	6.9	9.9
Moisture content, %, after soak, avg.	8.1	8.7	10.4
Moisture content, %, after soak, top 1"	9.1	7.5	9.9
Expansion, %, 96 hour soak	0.7	0.2	0.2
Bearing Ratio, 0.100" penetration	27.9	56.6	6.2

56 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	131.6	130.9	126.5
Moisture content, %, before soak	3.9	6.9	9.9
Moisture content, %, after soak, avg.	7.1	8.4	11.6
Moisture content, %, after soak, top 1"	8.1	7.3	10.1
Expansion, %, 96 hour soak	0.5	0.4	0.1
Bearing Ratio, 0.100" penetration	58.9	80.7	11.0


302524-001

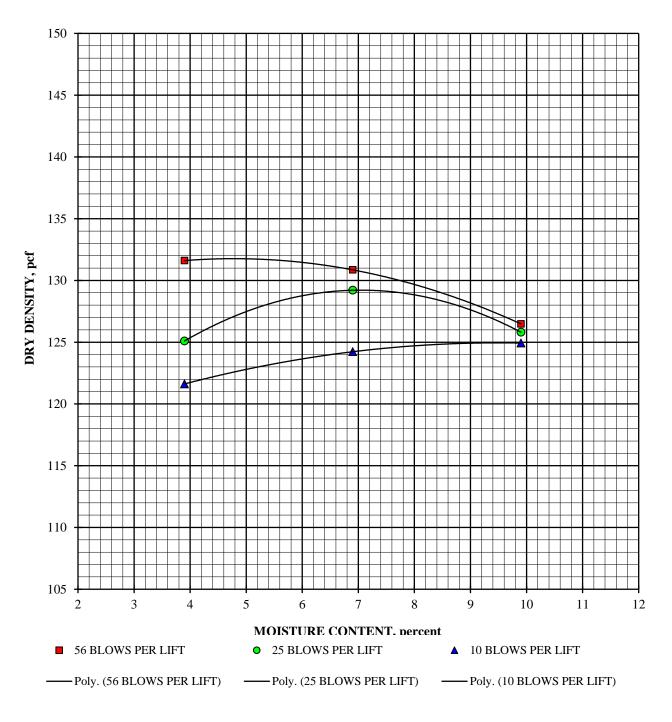
January 8, 2019

CALIFORNIA BEARING RATIO

CBR #4; Boring #3 @ 0.5 - 1.0' Brown Clayey Sand with Gravel (SC)

CBR vs. MOISTURE CONTENT

302524-001

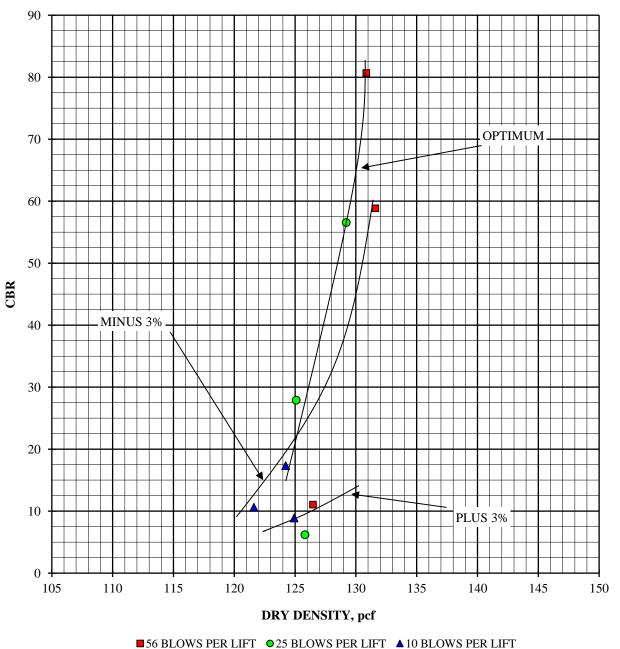

January 8, 2019

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #4; Boring #3 @ 0.5 - 1.0' Brown Clayey Sand with Gravel (SC)

DRY DENSITY vs. MOISTURE CONTENT


302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #4; Boring #3 @ 0.5 - 1.0' Brown Clayey Sand with Gravel (SC)

DRY DENSITY vs. CBR Arranged According to Moisture Content 302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #5; Boring #36 @ 2.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

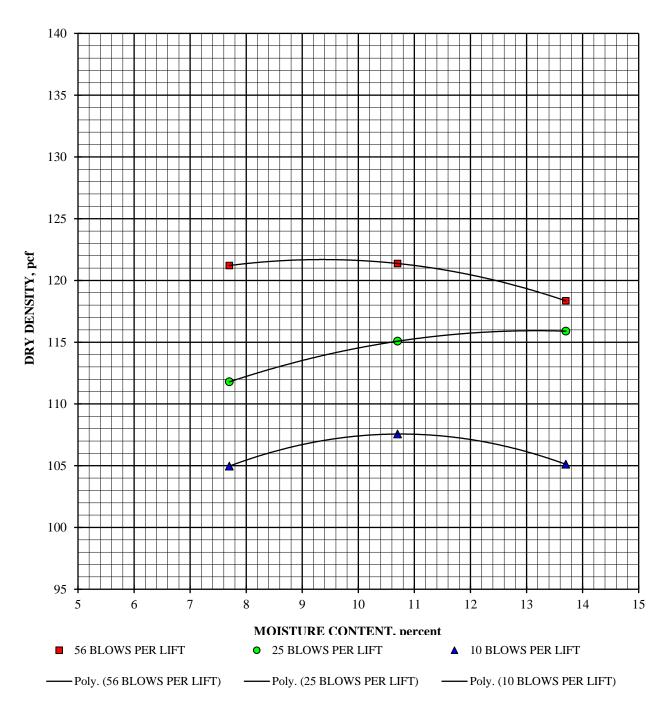
10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	105.0	107.6	105.1
Moisture content, %, before soak	7.7	10.7	13.7
Moisture content, %, after soak, avg.	21.4	14.8	26.8
Moisture content, %, after soak, top 1"	19.4	21.5	18.9
Expansion, %, 96 hour soak	1.9	0.3	0.1
Bearing Ratio, 0.100" penetration	2.3	2.6	2.2

25 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	111.8	115.1	115.9
Moisture content, %, before soak	7.7	10.7	13.7
Moisture content, %, after soak, avg.	18.1	16.4	16.7
Moisture content, %, after soak, top 1"	17.8	21.8	17.6
Expansion, %, 96 hour soak	2.0	0.6	0.1
Bearing Ratio, 0.100" penetration	3.8	14.4	7.4

56 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	121.2	121.4	118.4
Moisture content, %, before soak	7.7	10.7	13.7
Moisture content, %, after soak, avg.	13.5	11.6	14.1
Moisture content, %, after soak, top 1"	15.3	13.7	14.4
Expansion, %, 96 hour soak	2.7	0.2	0.1
Bearing Ratio, 0.100" penetration	10.6	24.2	6.2

302524-001

ASTM D 1883-16 (For a Range of Moisture Contents)

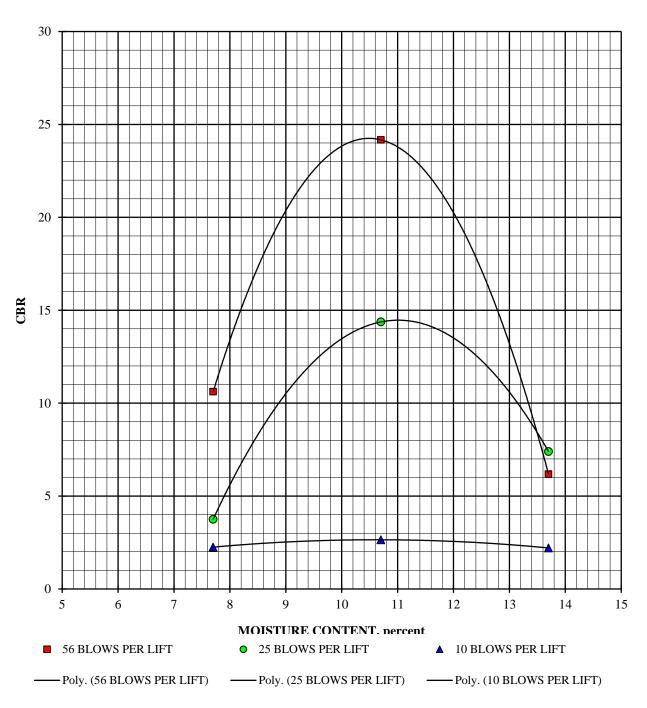

January 8, 2019

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #5; Boring #36 @ 2.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. MOISTURE CONTENT


302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #5; Boring #36 @ 2.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT

302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #5; Boring #36 @ 2.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

> 30 25 20 **OPTIMUM** CBR 15 MINUS 3% 10 Ó 5 PLUS 3% Δ 0 95 100 105 110 115 120 125 130 135 140 DRY DENSITY, pcf

DRY DENSITY vs. CBR

Arranged According to Moisture Content

ASTM D 1883-16 (For a Range of Moisture Contents)

302524-001

January 8, 2019

■ 56 BLOWS PER LIFT ● 25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

CBR #6 with 3% Lime added; Boring #27 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

	10 BLOWS PER LIFT
	Optimum Moisture
Dry density, pcf, before soak	106.0
Moisture content, %, before soak	14.1
Moisture content, %, after soak, avg.	19.0
Moisture content, %, after soak, top 1"	25.6
Expansion, %, 96 hour soak	0.1
Bearing Ratio, 0.100" penetration	27.4

25 BLOWS PER LIFT

	Optimum Moisture
Dry density, pcf, before soak	114.4
Moisture content, %, before soak	14.1
Moisture content, %, after soak, avg.	14.7
Moisture content, %, after soak, top 1"	19.2
Expansion, %, 96 hour soak	0.1
Bearing Ratio, 0.100" penetration	48.4

56 BLOWS PER LIFT

	Optimum Moisture
Dry density, pcf, before soak	116.4
Moisture content, %, before soak	14.1
Moisture content, %, after soak, avg.	15.0
Moisture content, %, after soak, top 1"	18.3
Expansion, %, 96 hour soak	0.1
Bearing Ratio, 0.100" penetration	53.4

302524-001

January 16, 2019

CALIFORNIA BEARING RATIO

CBR #6 with 3% Lime added; Boring #27 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. MOISTURE CONTENT

100 95 90 85 10 12 13 14 15 17 18 19 20 11 16 **MOISTURE CONTENT, percent**

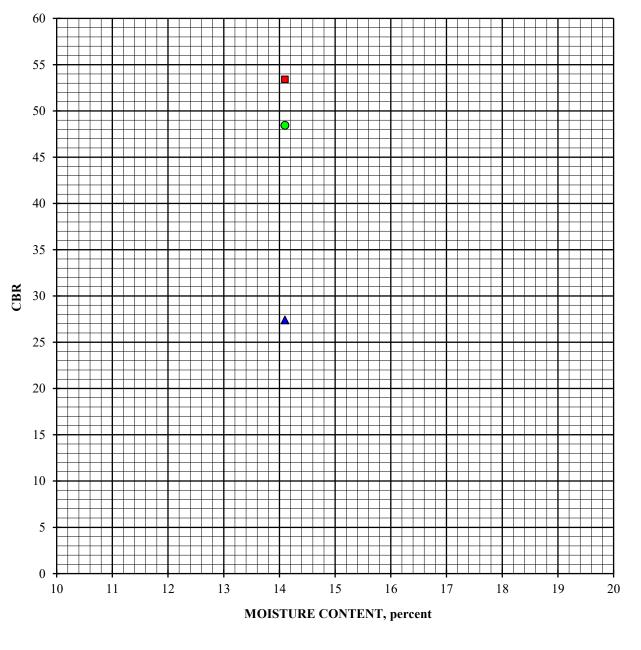
302524-001

January 16, 2019

ASTM D 1883-07 (At Optimum Moisture Content)

■ 56 BLOWS PER LIFT

• 25 BLOWS PER LIFT


▲ 10 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

CBR #6 with 3% Lime added; Boring #27 @ 2.0 - 4.0'

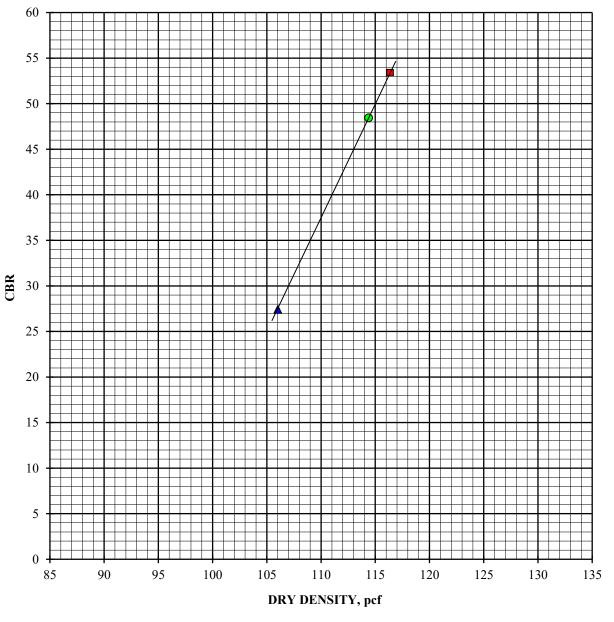
Dark Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT

302524-001

January 16, 2019

ASTM D 1883-07 (At Optimum Moisture Content)


■ 56 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

CBR #6 with 3% Lime added; Boring #27 @ 2.0 - 4.0'

Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. CBR AT Optimum Moisture Content

ASTM D 1883-07 (At Optimum Moisture Content)

302524-001

January 16, 2019

■ 56 BLOWS PER LIFT ● 25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

CBR #6 with 5% Lime added; Boring #27 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

	10 BLOWS PER LIFT
	Optimum Moisture
Dry density, pcf, before soak	98.9
Moisture content, %, before soak	15.2
Moisture content, %, after soak, avg.	22.6
Moisture content, %, after soak, top 1"	24.8
Expansion, %, 96 hour soak	0.1
Bearing Ratio, 0.100" penetration	22.2

25 BLOWS PER LIFT

	Optimum Moisture
Dry density, pcf, before soak	108.3
Moisture content, %, before soak	15.2
Moisture content, %, after soak, avg.	19.2
Moisture content, %, after soak, top 1"	21.4
Expansion, %, 96 hour soak	0.0
Bearing Ratio, 0.100" penetration	53.4

56 BLOWS PER LIFT

	Optimum Moisture
Dry density, pcf, before soak	114.1
Moisture content, %, before soak	15.2
Moisture content, %, after soak, avg.	17.7
Moisture content, %, after soak, top 1"	19.5
Expansion, %, 96 hour soak	0.1
Bearing Ratio, 0.100" penetration	72.9

302524-001

ASTM D 1883-07 (At Optimum Moisture Content)

January 16, 2019

CALIFORNIA BEARING RATIO

DRY DENSITY, pcf

CBR #6 with 5% Lime added; Boring #27 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. MOISTURE CONTENT

■ 56 BLOWS PER LIFT

11

12

13

85 10

•25 BLOWS PER LIFT

14

15

MOISTURE CONTENT, percent

16

▲ 10 BLOWS PER LIFT

18

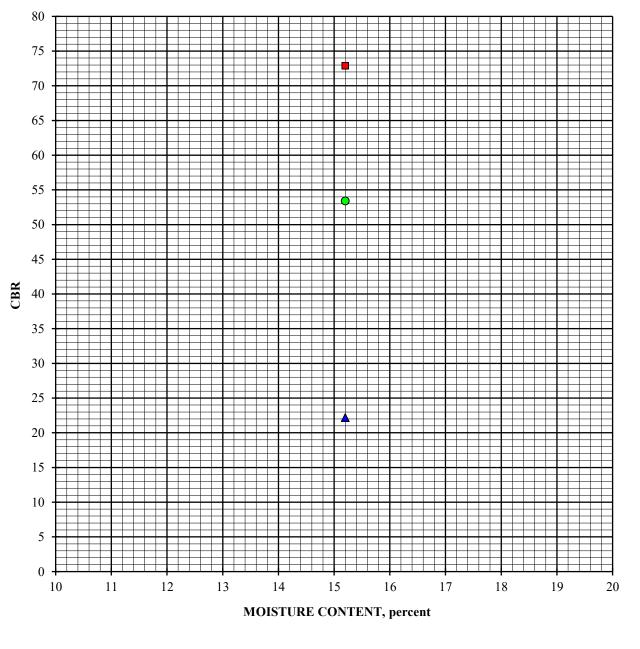
19

20

17

302524-001

January 16, 2019


ASTM D 1883-07 (At Optimum Moisture Content)

CALIFORNIA BEARING RATIO

CBR #6 with 5% Lime added; Boring #27 @ 2.0 - 4.0'

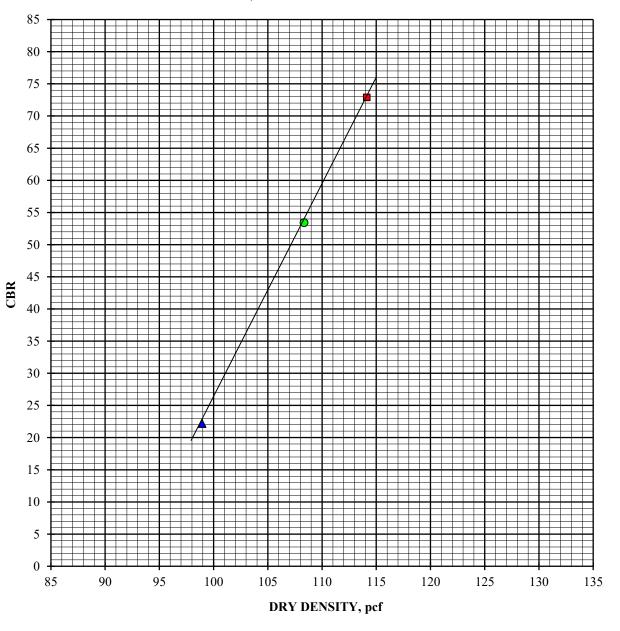
Dark Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT

302524-001

January 16, 2019

ASTM D 1883-07 (At Optimum Moisture Content)


■ 56 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

CBR #6 with 5% Lime added; Boring #27 @ 2.0 - 4.0'


Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. CBR AT Optimum Moisture Content ASTM D 1883-07 (At Optimum Moisture Content)

January 16, 2019

302524-001

CALIFORNIA BEARING RATIO

CBR #6 with 7% Lime added; Boring #27 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

1	0 BLOWS PER LIFT
	Optimum Moisture
Dry density, pcf, before soak	97.7
Moisture content, %, before soak	15.6
Moisture content, %, after soak, avg.	24.4
Moisture content, %, after soak, top 1"	26.4
Expansion, %, 96 hour soak	0.2
Bearing Ratio, 0.100" penetration	27.1

25 BLOWS PER LIFT

	Optimum Moisture
Dry density, pcf, before soak	105.4
Moisture content, %, before soak	15.6
Moisture content, %, after soak, avg.	20.9
Moisture content, %, after soak, top 1"	24.4
Expansion, %, 96 hour soak	0.2
Bearing Ratio, 0.100" penetration	49.2

56 BLOWS PER LIFT

	Optimum Moisture
Dry density, pcf, before soak	114.0
Moisture content, %, before soak	15.6
Moisture content, %, after soak, avg.	18.0
Moisture content, %, after soak, top 1"	22.8
Expansion, %, 96 hour soak	0.1
Bearing Ratio, 0.100" penetration	85.8

302524-001

ASTM D 1883-07 (At Optimum Moisture Content)

January 16, 2019

Oxnard Airport - Runway and Taxiway Rehabilitation / Reconstruction

CALIFORNIA BEARING RATIO

CBR #6 with 7% Lime added; Boring #27 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. MOISTURE CONTENT

■ 56 BLOWS PER LIFT

•25 BLOWS PER LIFT

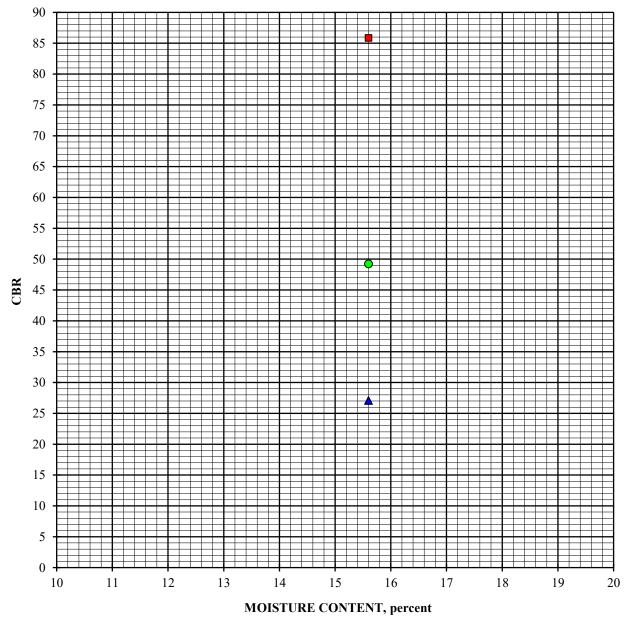
▲ 10 BLOWS PER LIFT

302524-001

January 16, 2019

20

ASTM D 1883-07 (At Optimum Moisture Content)



Oxnard Airport - Runway and Taxiway Rehabilitation / Reconstruction

CALIFORNIA BEARING RATIO

CBR #6 with 7% Lime added; Boring #27 @ 2.0 - 4.0'

Dark Brown Sandy Lean Clay (CL)

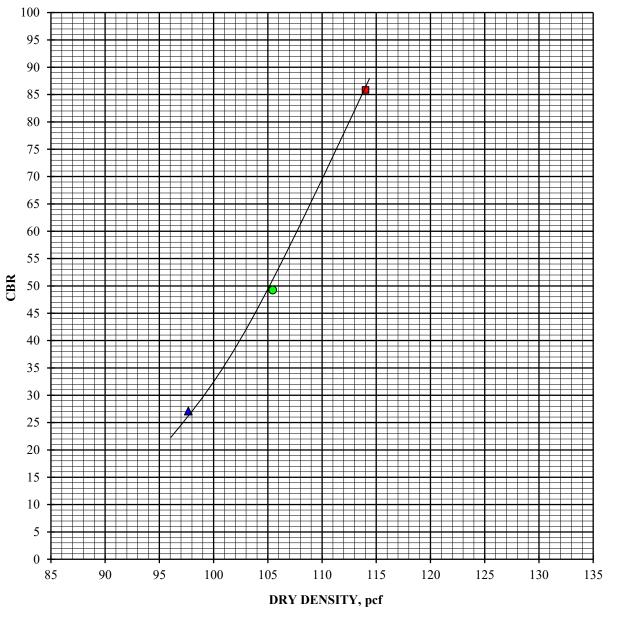
CBR vs. MOISTURE CONTENT

302524-001

January 16, 2019

ASTM D 1883-07 (At Optimum Moisture Content)

■56 BLOWS PER LIFT



Oxnard Airport - Runway and Taxiway Rehabilitation / Reconstruction

CALIFORNIA BEARING RATIO

CBR #6 with 7% Lime added; Boring #27 @ 2.0 - 4.0'

Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. CBR AT Optimum Moisture Content

ASTM D 1883-07 (At Optimum Moisture Content)

302524-001

January 16, 2019

■ 56 BLOWS PER LIFT ● 25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

CBR #7; Boring #23 @ 3.5 - 5.0' Brown Sandy Lean Clay (CL)

10 BLOWS PER LIFT Optimum -3 Percent Moisture + 3 percent Dry density, pcf, before soak 101.0 105.0 105.1 Moisture content, %, before soak 7.0 10.0 13.0 Moisture content, %, after soak, avg. 22.9 19.3 21.3 Moisture content, %, after soak, top 1" 26.2 23.5 25.3 Expansion, %, 96 hour soak 5.8 0.5 0.0 Bearing Ratio, 0.100" penetration 1.7 2.2 2.2

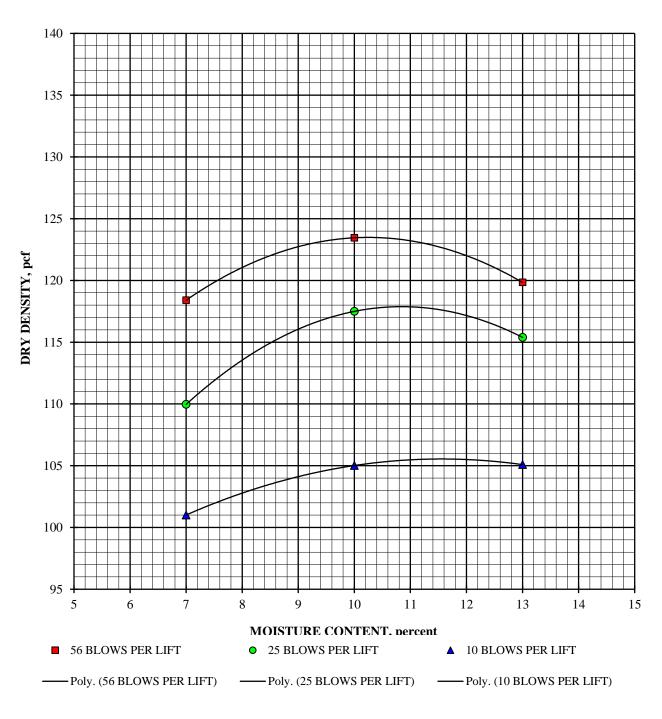
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	110.0	117.5	115.4
Moisture content, %, before soak	7.0	10.0	13.0
Moisture content, %, after soak, avg.	16.7	15.1	17.2
Moisture content, %, after soak, top 1"	23.7	20.3	20.5
Expansion, %, 96 hour soak	3.0	0.2	0.0
Bearing Ratio, 0.100" penetration	2.6	7.8	7.4

56 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	118.4	123.5	119.8
Moisture content, %, before soak	7.0	10.0	13.0
Moisture content, %, after soak, avg.	15.2	12.2	14.6
Moisture content, %, after soak, top 1"	18.6	14.8	15.7
Expansion, %, 96 hour soak	3.0	0.1	0.0
Bearing Ratio, 0.100" penetration	7.6	19.4	17.4

January 8, 2019

302524-001

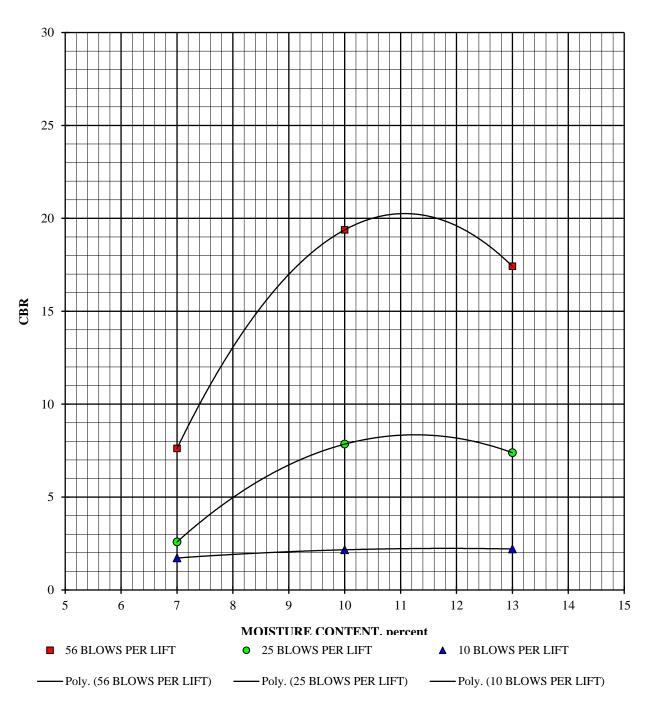
25 BLOWS PER LIFT



CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #7; Boring #23 @ 3.5 - 5.0' Brown Sandy Lean Clay (CL)


DRY DENSITY vs. MOISTURE CONTENT

302524-001

CALIFORNIA BEARING RATIO

CBR #7; Boring #23 @ 3.5 - 5.0' Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT

302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #7; Boring #23 @ 3.5 - 5.0' Brown Sandy Lean Clay (CL)

> 30 25 20 ø OPTIMUM Т PLUS 3% CBR 15 10 MINUS 3% 5 0 95 100 105 110 125 140 115 120 130 135 DRY DENSITY, pcf ■ 56 BLOWS PER LIFT ● 25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

DRY DENSITY vs. CBR Arranged According to Moisture Content

ASTM D 1883-16 (For a Range of Moisture Contents)

January 8, 2019

302524-001

CALIFORNIA BEARING RATIO

CBR #8; Boring #29 @ 2.0 - 5.0' Brown / Gray Mottled Sandy Lean Clay (CL)

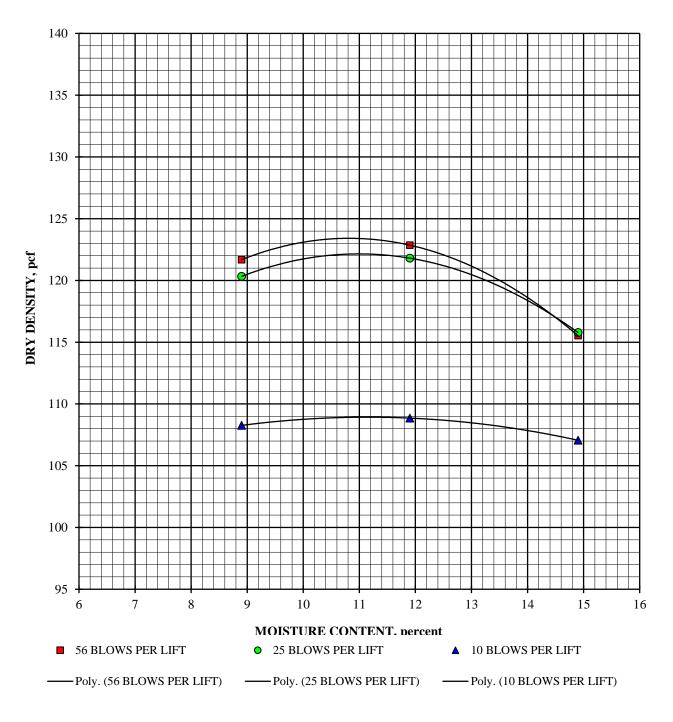
10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	108.3	108.9	107.1
Moisture content, %, before soak	8.9	11.9	14.9
Moisture content, %, after soak, avg.	15.9	12.9	23.5
Moisture content, %, after soak, top 1"	20.4	18.3	17.7
Expansion, %, 96 hour soak	0.7	0.4	0.1
Bearing Ratio, 0.100" penetration	4.6	6.8	2.6

25 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak	120.3	121.8	115.8	
Moisture content, %, before soak	8.9	11.9	14.9	
Moisture content, %, after soak, avg.	12.6	14.0	15.4	
Moisture content, %, after soak, top 1"	16.8	15.6	16.5	
Expansion, %, 96 hour soak	0.6	0.3	0.7	
Bearing Ratio, 0.100" penetration	17.7	27.9	3.2	

56 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	121.7	122.9	115.5
Moisture content, %, before soak	8.9	11.9	14.9
Moisture content, %, after soak, avg.	16.3	12.4	15.2
Moisture content, %, after soak, top 1"	13.8	15.1	16.8
Expansion, %, 96 hour soak	0.6	0.4	0.0
Bearing Ratio, 0.100" penetration	19.7	27.5	2.8

302524-001

January 8, 2019



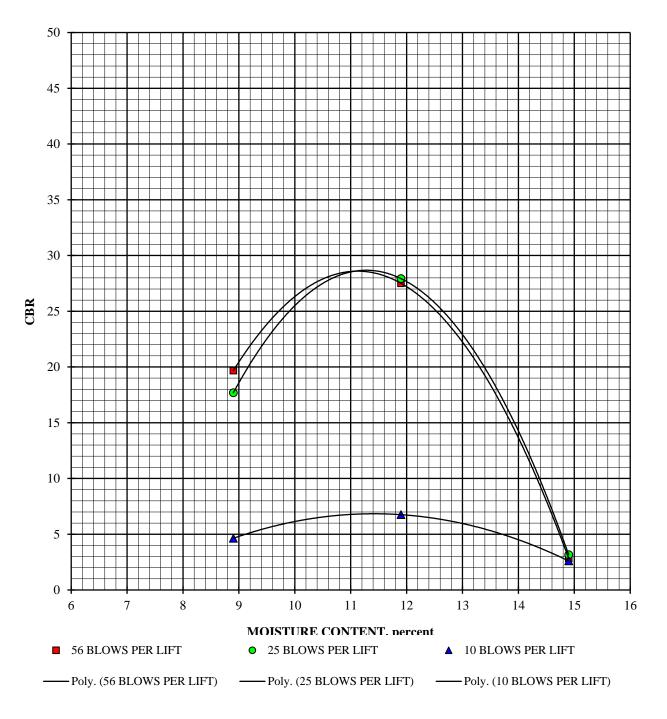
CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #8; Boring #29 @ 2.0 - 5.0'

Brown / Gray Mottled Sandy Lean Clay (CL)

DRY DENSITY vs. MOISTURE CONTENT


302524-001

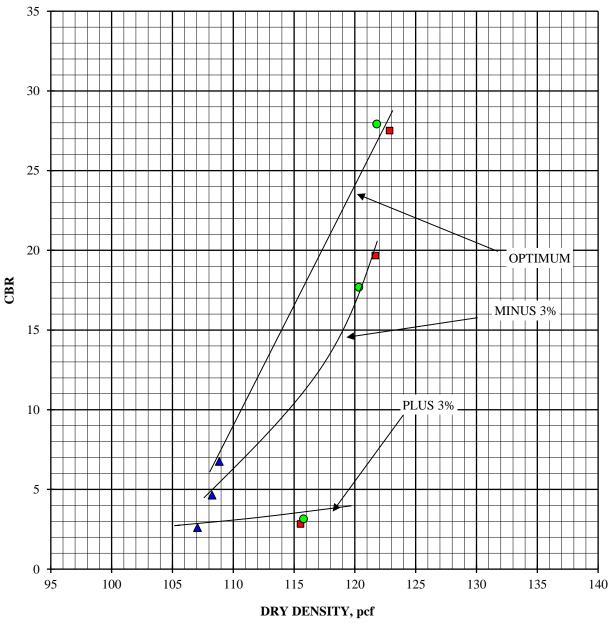
CALIFORNIA BEARING RATIO

CBR #8; Boring #29 @ 2.0 - 5.0'

Brown / Gray Mottled Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT

302524-001


January 8, 2019

CALIFORNIA BEARING RATIO

CBR #8; Boring #29 @ 2.0 - 5.0'

Brown / Gray Mottled Sandy Lean Clay (CL)

DRY DENSITY vs. CBR

Arranged According to Moisture Content

■ 56 BLOWS PER LIFT ● 25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #9; Boring #21 @ 1.5 - 3.0' Brown Sandy Lean Clay (CL)

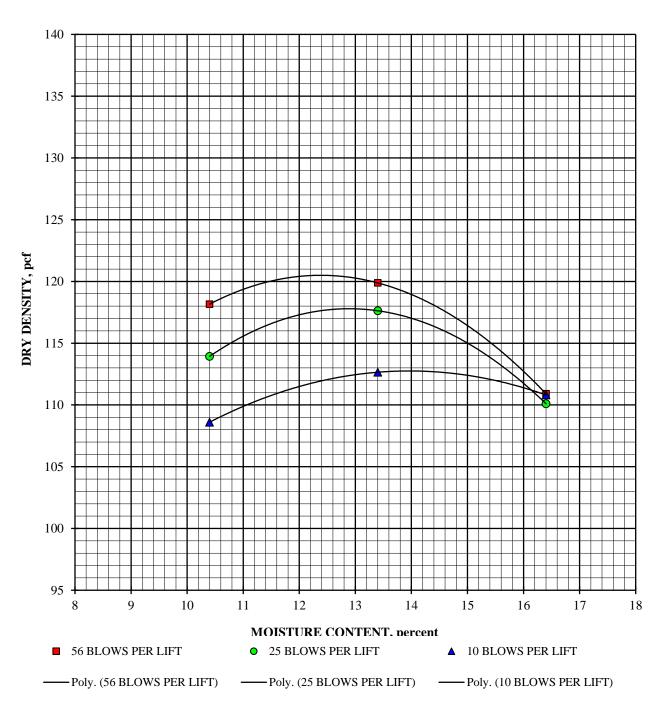
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	108.6	112.7	110.8
Moisture content, %, before soak	10.4	13.4	16.4
Moisture content, %, after soak, avg.	15.2	15.6	17.2
Moisture content, %, after soak, top 1"	19.1	22.8	19.8
Expansion, %, 96 hour soak	0.4	0.1	0.1
Bearing Ratio, 0.100" penetration	3.3	5.0	4.7

10 BLOWS PER LIFT

25 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak	113.9	117.6	110.1	
Moisture content, %, before soak	10.4	13.4	16.4	
Moisture content, %, after soak, avg.	20.2	16.1	17.7	
Moisture content, %, after soak, top 1"	17.3	18.8	19.1	
Expansion, %, 96 hour soak	0.2	0.1	0.2	
Bearing Ratio, 0.100" penetration	12.8	14.3	3.9	

56 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	118.2	119.9	110.9
Moisture content, %, before soak	10.4	13.4	16.4
Moisture content, %, after soak, avg.	17.4	14.5	14.6
Moisture content, %, after soak, top 1"	16.2	15.8	18.9
Expansion, %, 96 hour soak	0.3	0.1	0.0
Bearing Ratio, 0.100" penetration	17.8	17.9	3.0

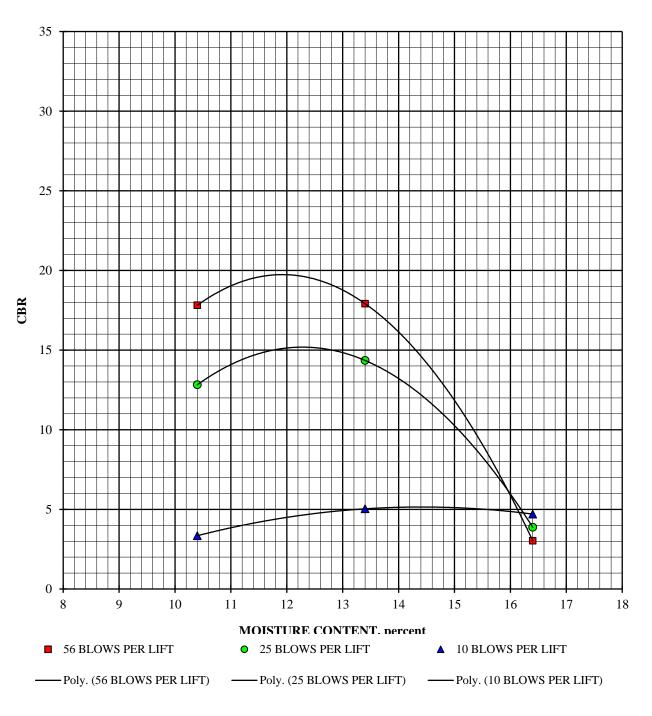
302524-001


ASTM D 1883-16 (For a Range of Moisture Contents)

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #9; Boring #21 @ 1.5 - 3.0' Brown Sandy Lean Clay (CL)


DRY DENSITY vs. MOISTURE CONTENT

302524-001

CALIFORNIA BEARING RATIO

CBR #9; Boring #21 @ 1.5 - 3.0' Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT

302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #9; Boring #21 @ 1.5 - 3.0' Brown Sandy Lean Clay (CL)

DRY DENSITY vs. CBR Arranged According to Moisture Content

ASTM D 1883-16 (For a Range of Moisture Contents)

January 8, 2019

302524-001

CALIFORNIA BEARING RATIO

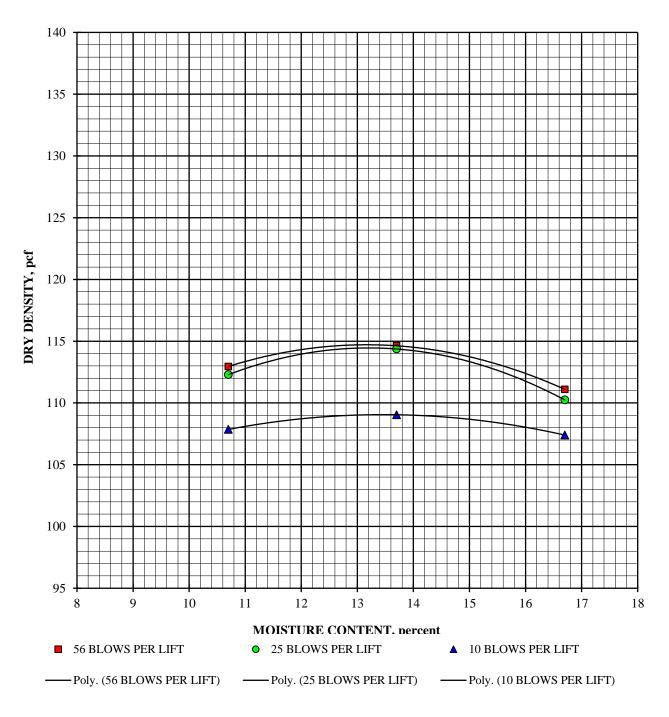
CBR #11; Boring #16 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	107.9	109.0	107.4
Moisture content, %, before soak	10.7	13.7	16.7
Moisture content, %, after soak, avg.	18.6	17.4	20.1
Moisture content, %, after soak, top 1"	22.6	22.3	21.7
Expansion, %, 96 hour soak	0.4	0.2	0.0
Bearing Ratio, 0.100" penetration	3.6	5.9	3.0

25 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak	112.3	114.4	110.2	
Moisture content, %, before soak	10.7	13.7	16.7	
Moisture content, %, after soak, avg.	20.3	16.2	19.2	
Moisture content, %, after soak, top 1"	18.8	18.1	20.7	
Expansion, %, 96 hour soak	0.3	0.2	0.0	
Bearing Ratio, 0.100" penetration	8.7	10.0	3.2	

56 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	113.0	114.6	111.1
Moisture content, %, before soak	10.7	13.7	16.7
Moisture content, %, after soak, avg.	22.1	16.5	18.3
Moisture content, %, after soak, top 1"	20.6	17.5	20.9
Expansion, %, 96 hour soak	0.4	0.2	0.0
Bearing Ratio, 0.100" penetration	10.9	12.1	2.9

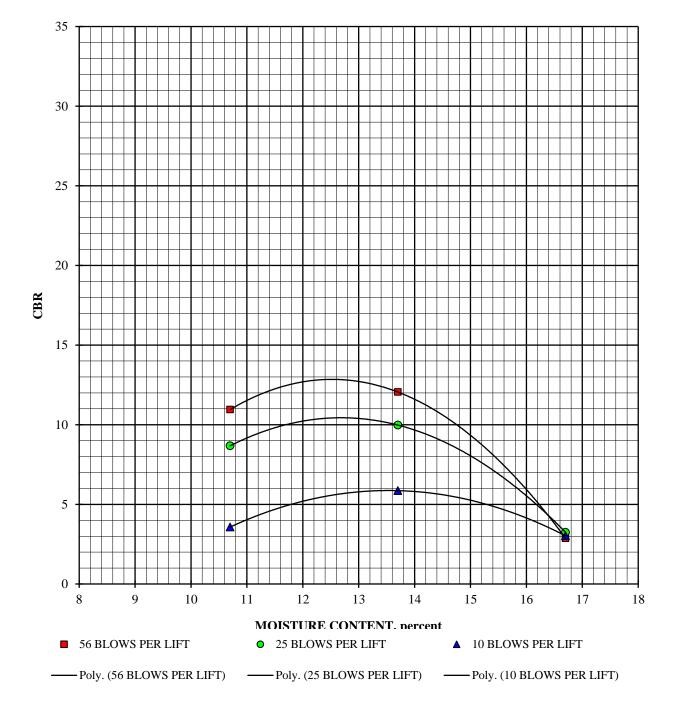
302524-001


ASTM D 1883-16 (For a Range of Moisture Contents)

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #11; Boring #16 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

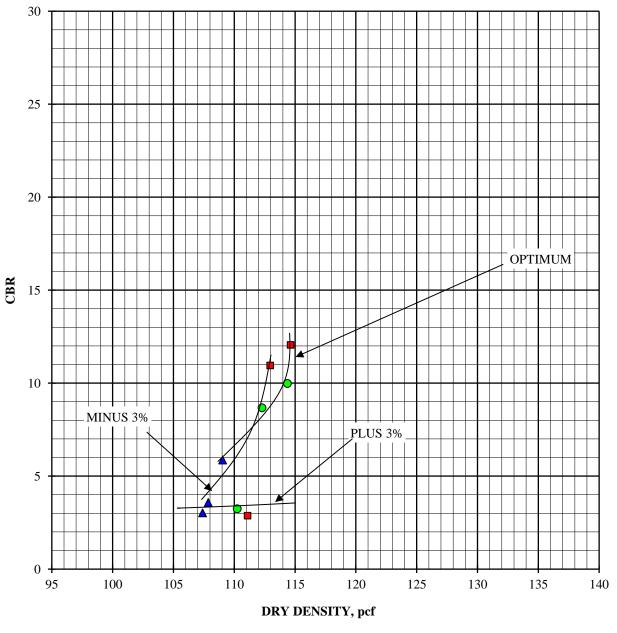

DRY DENSITY vs. MOISTURE CONTENT

302524-001

CALIFORNIA BEARING RATIO

CBR #11; Boring #16 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT


302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #11; Boring #16 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. CBR Arranged According to Moisture Content

ASTM D 1883-16 (For a Range of Moisture Contents)

January 8, 2019

302524-001

■ 56 BLOWS PER LIFT ● 25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

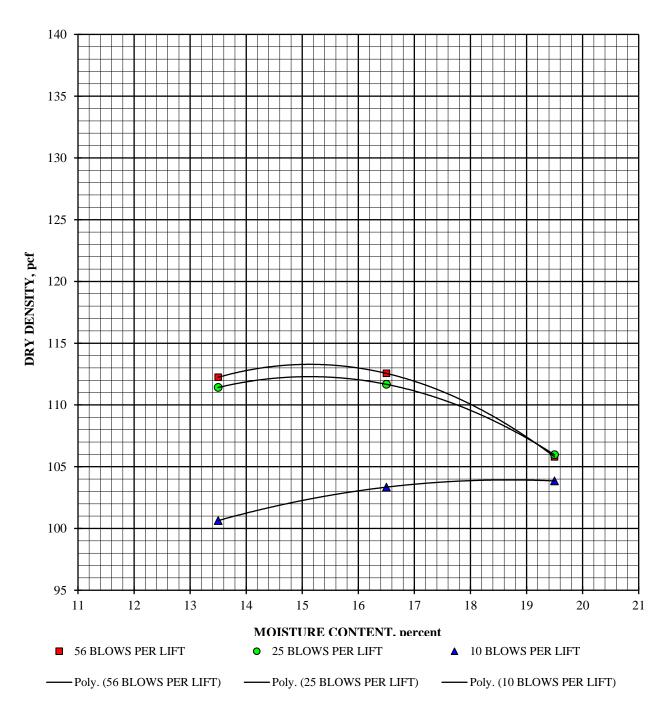
CBR #12; Boring #13 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	100.6	103.3	103.8
Moisture content, %, before soak	13.5	16.5	19.5
Moisture content, %, after soak, avg.	24.8	22.0	20.5
Moisture content, %, after soak, top 1"	30.7	25.3	23.8
Expansion, %, 96 hour soak	0.5	0.1	0.0
Bearing Ratio, 0.100" penetration	2.5	5.9	4.6

25 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	111.4	111.7	106.0
Moisture content, %, before soak	13.5	16.5	19.5
Moisture content, %, after soak, avg.	15.8	18.3	19.7
Moisture content, %, after soak, top 1"	23.8	20.9	22.8
Expansion, %, 96 hour soak	0.2	0.1	0.0
Bearing Ratio, 0.100" penetration	10.5	15.2	4.6

56 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	112.2	112.6	105.8
Moisture content, %, before soak	13.5	16.5	19.5
Moisture content, %, after soak, avg.	21.0	19.2	19.8
Moisture content, %, after soak, top 1"	17.7	18.8	22.8
Expansion, %, 96 hour soak	0.5	0.0	0.0
Bearing Ratio, 0.100" penetration	13.6	15.8	4.3

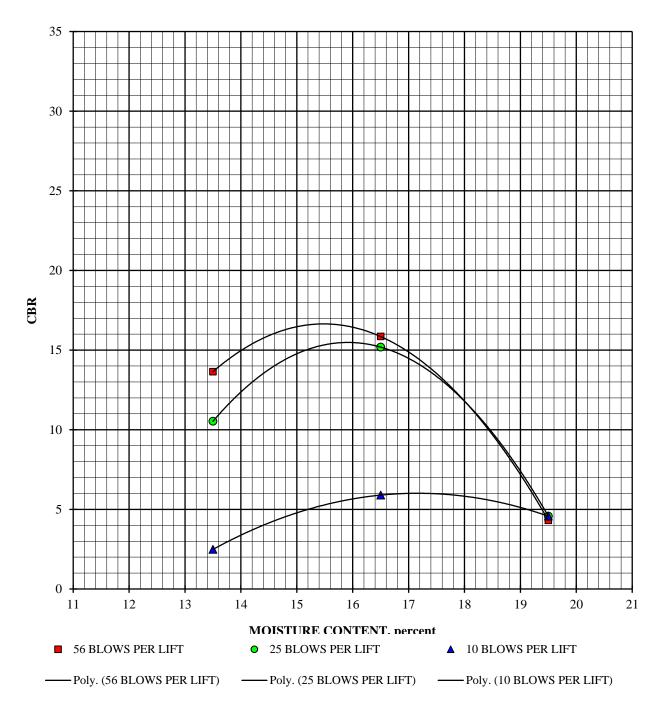
302524-001


ASTM D 1883-16 (For a Range of Moisture Contents)

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #12; Boring #13 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

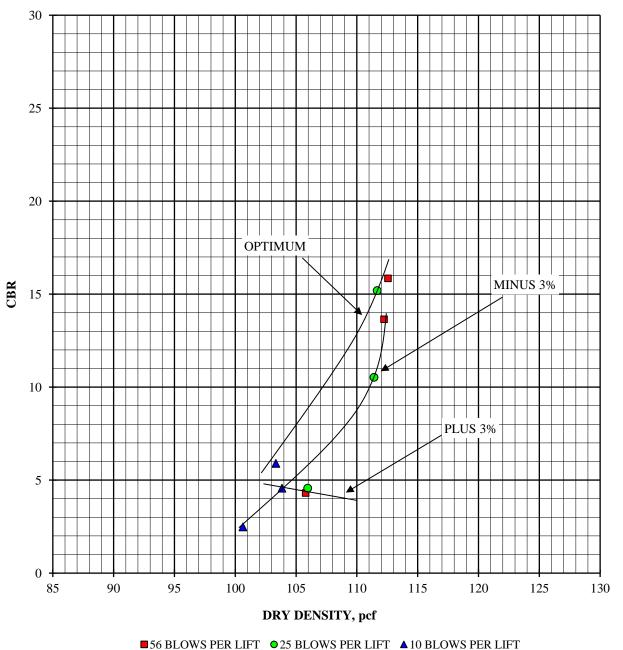

DRY DENSITY vs. MOISTURE CONTENT

302524-001

CALIFORNIA BEARING RATIO

CBR #12; Boring #13 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT


302524-001

ASTM D 1883-16 (For a Range of Moisture Contents)

CALIFORNIA BEARING RATIO

CBR #12; Boring #13 @ 2.0 - 4.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. CBR

Arranged According to Moisture Content

302524-001

January 8, 2019

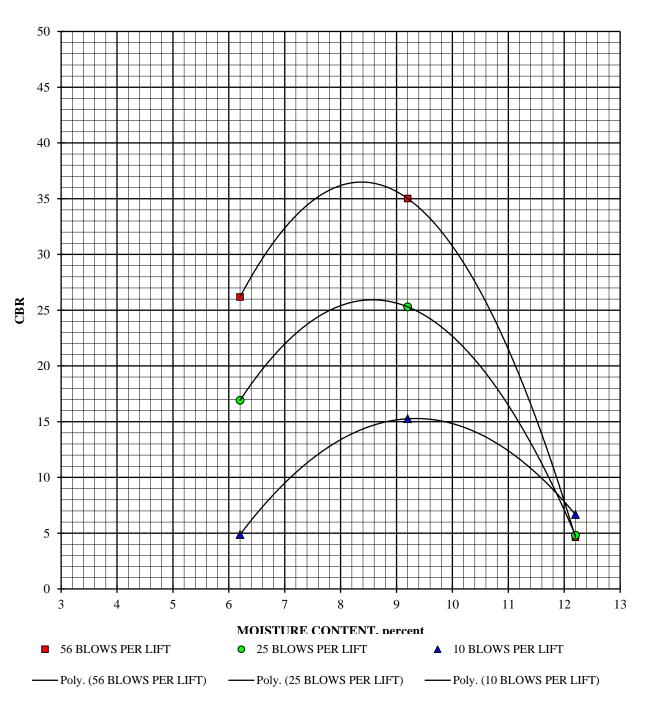
CALIFORNIA BEARING RATIO

CBR #13; Boring #40 @ 1.5 - 3.5' Brown Silty Sand (SM) ASTM D 1883-16 (For a Range of Moisture Contents)

January 8, 2019

302524-001

10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	115.8	119.0	116.3
Moisture content, %, before soak	6.2	9.2	12.2
Moisture content, %, after soak, avg.	14.9	11.8	18.8
Moisture content, %, after soak, top 1"	19.3	15.9	14.0
Expansion, %, 96 hour soak	0.2	0.1	0.0
Bearing Ratio, 0.100" penetration	4.9	15.3	6.7


25 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	122.8	127.8	120.4
Moisture content, %, before soak	6.2	9.2	12.2
Moisture content, %, after soak, avg.	11.1	10.4	12.5
Moisture content, %, after soak, top 1"	15.1	11.4	13.0
Expansion, %, 96 hour soak	0.4	0.1	0.0
Bearing Ratio, 0.100" penetration	16.9	25.3	4.8

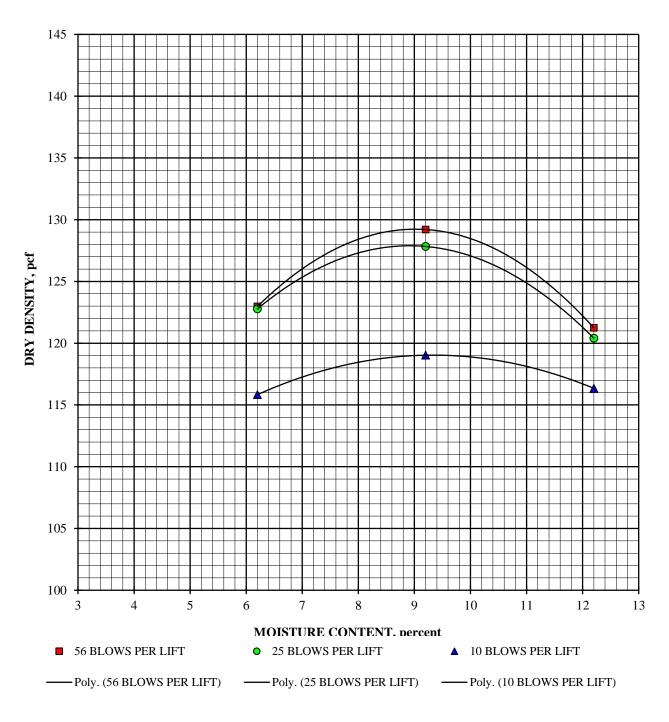
56 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	123.0	129.2	121.2
Moisture content, %, before soak	6.2	9.2	12.2
Moisture content, %, after soak, avg.	15.6	11.7	14.1
Moisture content, %, after soak, top 1"	13.3	10.4	12.4
Expansion, %, 96 hour soak	0.5	0.2	0.0
Bearing Ratio, 0.100" penetration	26.2	35.0	4.6

CALIFORNIA BEARING RATIO

CBR #13; Boring #40 @ 1.5 - 3.5' Brown Silty Sand (SM)

CBR vs. MOISTURE CONTENT

302524-001


January 8, 2019

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #13; Boring #40 @ 1.5 - 3.5' Brown Silty Sand (SM)

DRY DENSITY vs. MOISTURE CONTENT

302524-001

CALIFORNIA BEARING RATIO

CBR #13; Boring #40 @ 1.5 - 3.5' Brown Silty Sand (SM)

DRY DENSITY vs. CBR

Arranged According to Moisture Content

■ 56 BLOWS PER LIFT ● 25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

302524-001

January 8, 2019

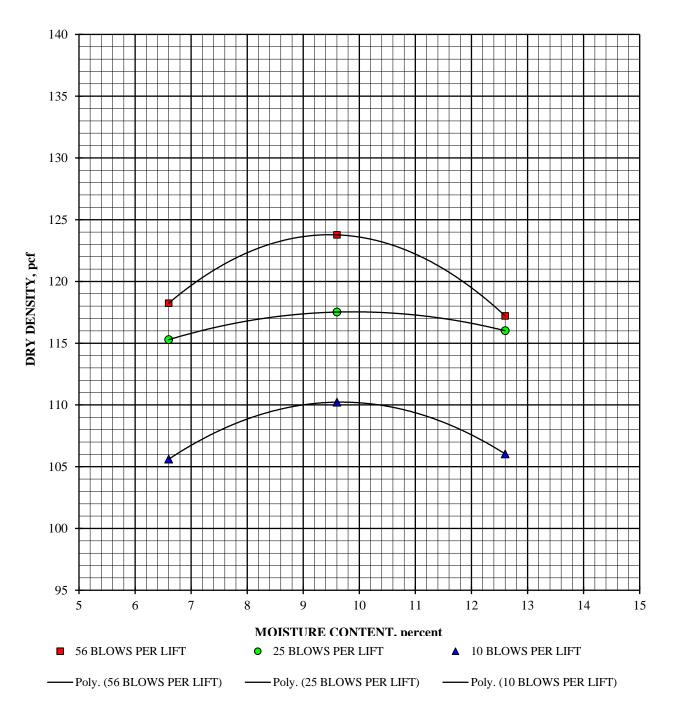
CALIFORNIA BEARING RATIO

CBR #14; Boring #39 @ 2.0 - 5.0' Brown Sandy Fat Clay (CH) ASTM D 1883-16 (For a Range of Moisture Contents)

January 8, 2019

10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	105.6	110.2	106.0
Moisture content, %, before soak	6.6	9.6	12.6
Moisture content, %, after soak, avg.	20.5	17.4	24.2
Moisture content, %, after soak, top 1"	22.2	21.4	17.8
Expansion, %, 96 hour soak	5.3	3.1	2.2
Bearing Ratio, 0.100" penetration	2.0	3.2	2.2

25 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	115.3	117.5	116.0
Moisture content, %, before soak	6.6	9.6	12.6
Moisture content, %, after soak, avg.	16.8	15.3	13.9
Moisture content, %, after soak, top 1"	21.9	17.9	17.2
Expansion, %, 96 hour soak	3.3	2.0	0.0
Bearing Ratio, 0.100" penetration	3.8	5.5	4.6

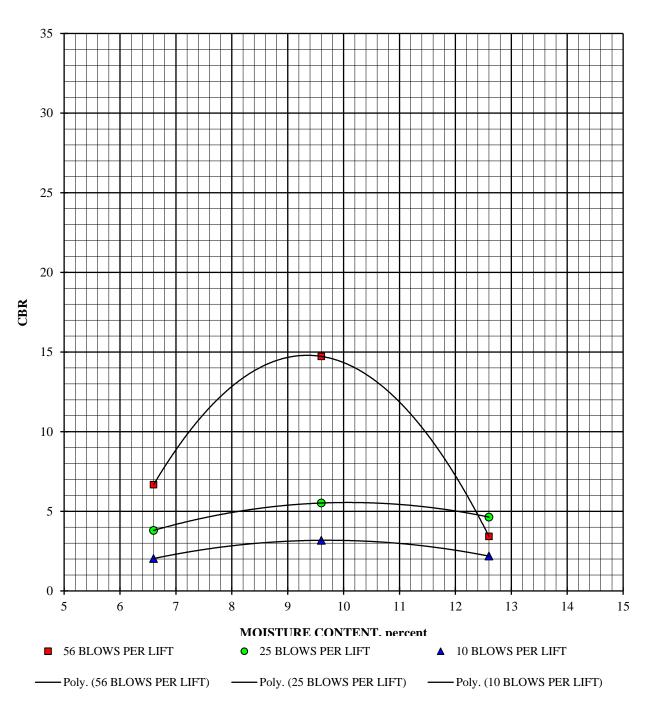

56 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	118.2	123.8	117.2
Moisture content, %, before soak	6.6	9.6	12.6
Moisture content, %, after soak, avg.	20.0	13.1	13.2
Moisture content, %, after soak, top 1"	19.5	18.0	17.7
Expansion, %, 96 hour soak	4.1	1.6	0.0
Bearing Ratio, 0.100" penetration	6.7	14.7	3.4

302524-001

CALIFORNIA BEARING RATIO

CBR #14; Boring #39 @ 2.0 - 5.0' Brown Sandy Fat Clay (CH)

DRY DENSITY vs. MOISTURE CONTENT

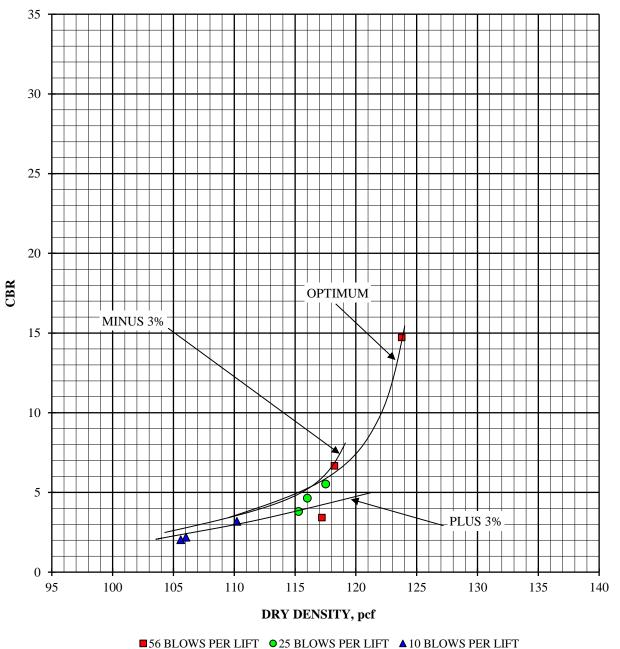

302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #14; Boring #39 @ 2.0 - 5.0' Brown Sandy Fat Clay (CH)

CBR vs. MOISTURE CONTENT


302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #14; Boring #39 @ 2.0 - 5.0' Brown Sandy Fat Clay (CH)

DRY DENSITY vs. CBR

Arranged According to Moisture Content

302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #15; Boring #17 @ 0.5 - 1.5' Brown Clayey Sand with Gravel (SC)

10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	118.7	119.3	119.1
Moisture content, %, before soak	5.0	8.0	11.0
Moisture content, %, after soak, avg.	13.0	12.4	17.2
Moisture content, %, after soak, top 1"	16.7	13.8	13.6
Expansion, %, 96 hour soak	0.0	0.0	0.0
Bearing Ratio, 0.100" penetration	14.2	21.9	13.3

25 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	119.8	122.4	120.6
Moisture content, %, before soak	5.0	8.0	11.0
Moisture content, %, after soak, avg.	14.8	13.7	17.8
Moisture content, %, after soak, top 1"	14.2	13.1	12.8
Expansion, %, 96 hour soak	0.2	0.1	0.2
Bearing Ratio, 0.100" penetration	15.8	61.2	24.7

56 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	125.3	129.2	128.1
Moisture content, %, before soak	5.0	8.0	11.0
Moisture content, %, after soak, avg.	5.6	9.3	19.9
Moisture content, %, after soak, top 1"	16.3	14.4	13.6
Expansion, %, 96 hour soak	0.2	0.1	0.0
Bearing Ratio, 0.100" penetration	20.8	81.7	61.2

302524-001

ASTM D 1883-16 (For a Range of Moisture Contents)

CALIFORNIA BEARING RATIO

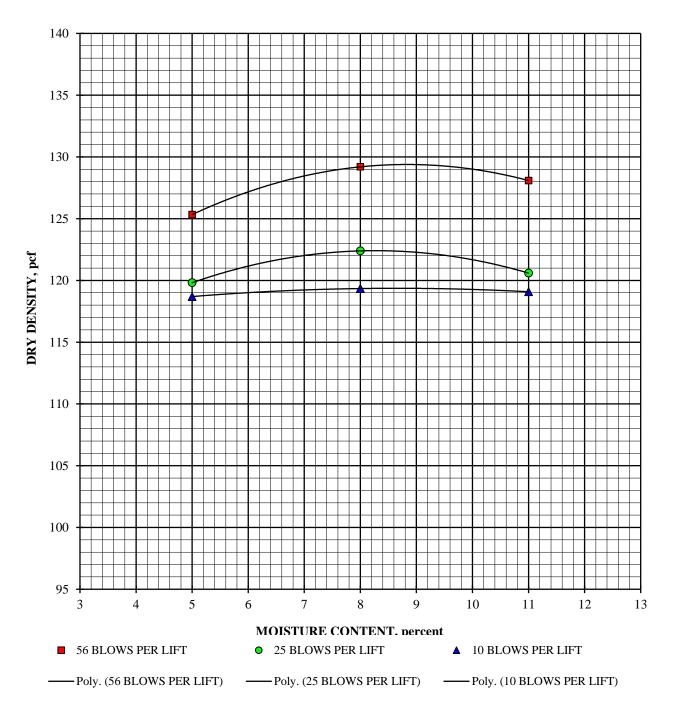
CBR #15; Boring #17 @ 0.5 - 1.5' Brown Clayey Sand with Gravel (SC)

CBR MOISTURE CONTENT. percent • 25 BLOWS PER LIFT ■ 56 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT - Poly. (56 BLOWS PER LIFT) - Poly. (25 BLOWS PER LIFT) - Poly. (10 BLOWS PER LIFT)

CBR vs. MOISTURE CONTENT

ASTM D 1883-16 (For a Range of Moisture Contents)

January 8, 2019


302524-001

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #15; Boring #17 @ 0.5 - 1.5' Brown Clayey Sand with Gravel (SC)

DRY DENSITY vs. MOISTURE CONTENT

302524-001

CALIFORNIA BEARING RATIO

CBR #15; Boring #17 @ 0.5 - 1.5' Brown Clayey Sand with Gravel (SC)

DRY DENSITY vs. CBR

Arranged According to Moisture Content

ASTM D 1883-16 (For a Range of Moisture Contents)

January 8, 2019

302524-001

■ 56 BLOWS PER LIFT ● 25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

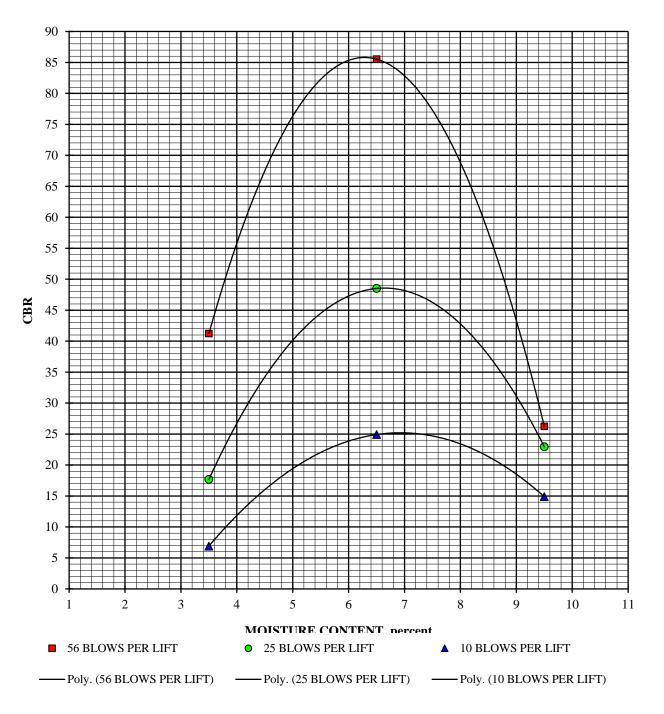
CALIFORNIA BEARING RATIO

CBR #16; Boring #28 @ 0.5 - 1.5' Brown Silty Gravel with Sand (GM)

10 BLOWS PER LIFT Optimum -3 Percent Moisture + 3 percent Dry density, pcf, before soak 118.8 121.8 112.9 Moisture content, %, before soak 3.5 6.5 9.5 Moisture content, %, after soak, avg. 8.2 8.9 20.8 Moisture content, %, after soak, top 1" 9.6 9.3 9.0 Expansion, %, 96 hour soak 0.0 0.0 0.0 Bearing Ratio, 0.100" penetration 6.9 24.9 14.9

25 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak	119.0	124.4	113.7	
Moisture content, %, before soak	3.5	6.5	9.5	
Moisture content, %, after soak, avg.	8.7	8.1	11.4	
Moisture content, %, after soak, top 1"	9.8	8.0	8.7	
Expansion, %, 96 hour soak	0.0	0.0	0.0	
Bearing Ratio, 0.100" penetration	17.7	48.5	23.0	

56 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak	128.6	130.6	115.3	
Moisture content, %, before soak	3.5	6.5	9.5	
Moisture content, %, after soak, avg.	6.4	7.7	9.8	
Moisture content, %, after soak, top 1"	9.0	7.1	9.2	
Expansion, %, 96 hour soak	0.0	0.0	0.0	
Bearing Ratio, 0.100" penetration	41.2	85.5	26.2	


302524-001

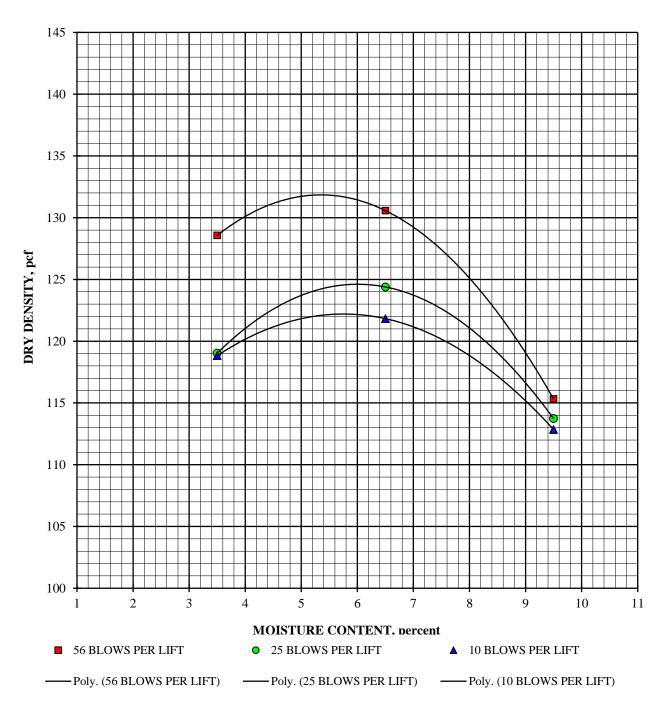
ASTM D 1883-16 (For a Range of Moisture Contents)

CALIFORNIA BEARING RATIO

CBR #16; Boring #28 @ 0.5 - 1.5' Brown Silty Gravel with Sand (GM)

CBR vs. MOISTURE CONTENT

302524-001

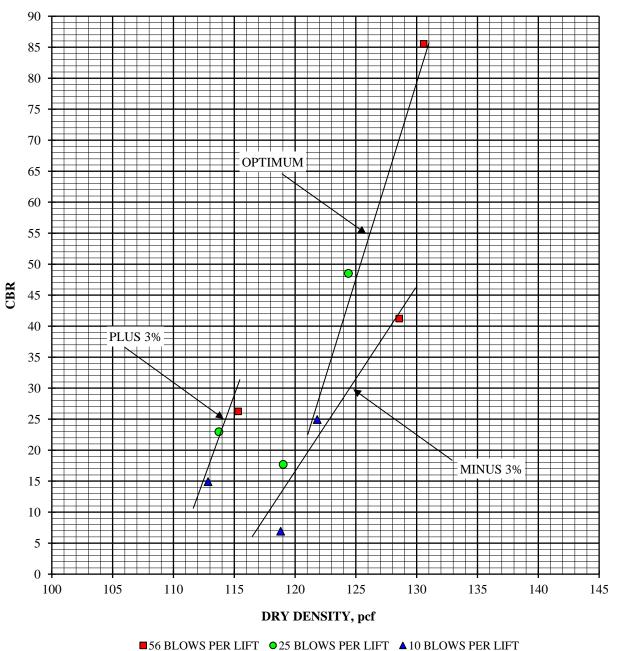

ASTM D 1883-16 (For a Range of Moisture Contents) January 8, 2019

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #16; Boring #28 @ 0.5 - 1.5' Brown Silty Gravel with Sand (GM)

DRY DENSITY vs. MOISTURE CONTENT


302524-001

January 8, 2019

CALIFORNIA BEARING RATIO

CBR #16; Boring #28 @ 0.5 - 1.5' Brown Silty Gravel with Sand (GM)

DRY DENSITY vs. CBR

Arranged According to Moisture Content

302524-001

January 8, 2019

ASTM D 1883-16 (For a Range of Moisture Contents)

CALIFORNIA BEARING RATIO

CBR #17; Boring #14 @ 0.5 - 1.5' Brown Silty Sand with Gravel (SM)

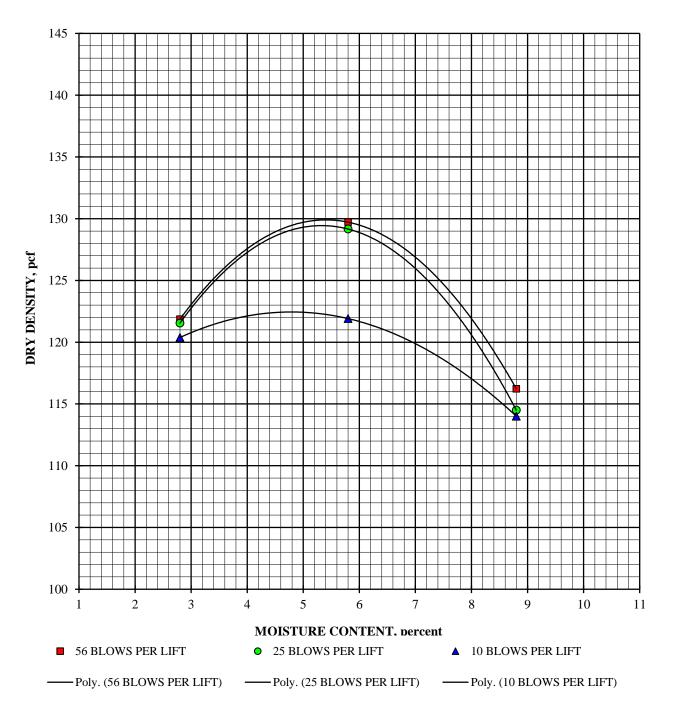
10 BLOWS PER LIFT Optimum -3 Percent Moisture + 3 percent Dry density, pcf, before soak 120.4 121.9 114.0 Moisture content, %, before soak 8.8 2.8 5.8 Moisture content, %, after soak, avg. 12.8 9.3 9.5 Moisture content, %, after soak, top 1" 9.7 8.6 8.3 Expansion, %, 96 hour soak 0.0 0.0 0.0 Bearing Ratio, 0.100" penetration 12.2 18.5 14.7

	25 BLOWS PER LIFT		
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	121.5	129.2	114.5
Moisture content, %, before soak	2.8	5.8	8.8
Moisture content, %, after soak, avg.	12.2	8.1	10.8
Moisture content, %, after soak, top 1"	9.7	8.9	8.2
Expansion, %, 96 hour soak Bearing Ratio, 0.100" penetration	0.0 12.6	0.0 52.9	0.0 23.0

	56 BLOWS PER LIFT		
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	121.9	129.7	116.2
Moisture content, %, before soak	2.8	5.8	8.8
Moisture content, %, after soak, avg.	9.7	8.6	9.4
Moisture content, %, after soak, top 1"	8.7	7.8	7.7
Expansion, %, 96 hour soak	0.0	0.0	0.0
Bearing Ratio, 0.100" penetration	48.4	82.9	19.9

302524-001

ASTM D 1883-16 (For a Range of Moisture Contents)


January 8, 2019

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

CBR #17; Boring #14 @ 0.5 - 1.5' Brown Silty Sand with Gravel (SM)

DRY DENSITY vs. MOISTURE CONTENT

302524-001

January 8, 2019

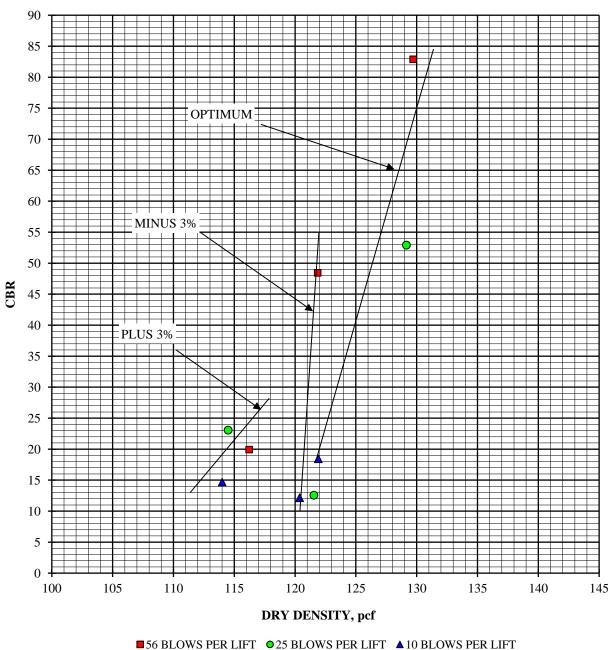
CALIFORNIA BEARING RATIO

CBR #17; Boring #14 @ 0.5 - 1.5' Brown Silty Sand with Gravel (SM)

CBR MOISTURE CONTENT nercent ■ 56 BLOWS PER LIFT • 25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT - Poly. (10 BLOWS PER LIFT) - Poly. (56 BLOWS PER LIFT) - Poly. (25 BLOWS PER LIFT) _ _

CBR vs. MOISTURE CONTENT

302524-001

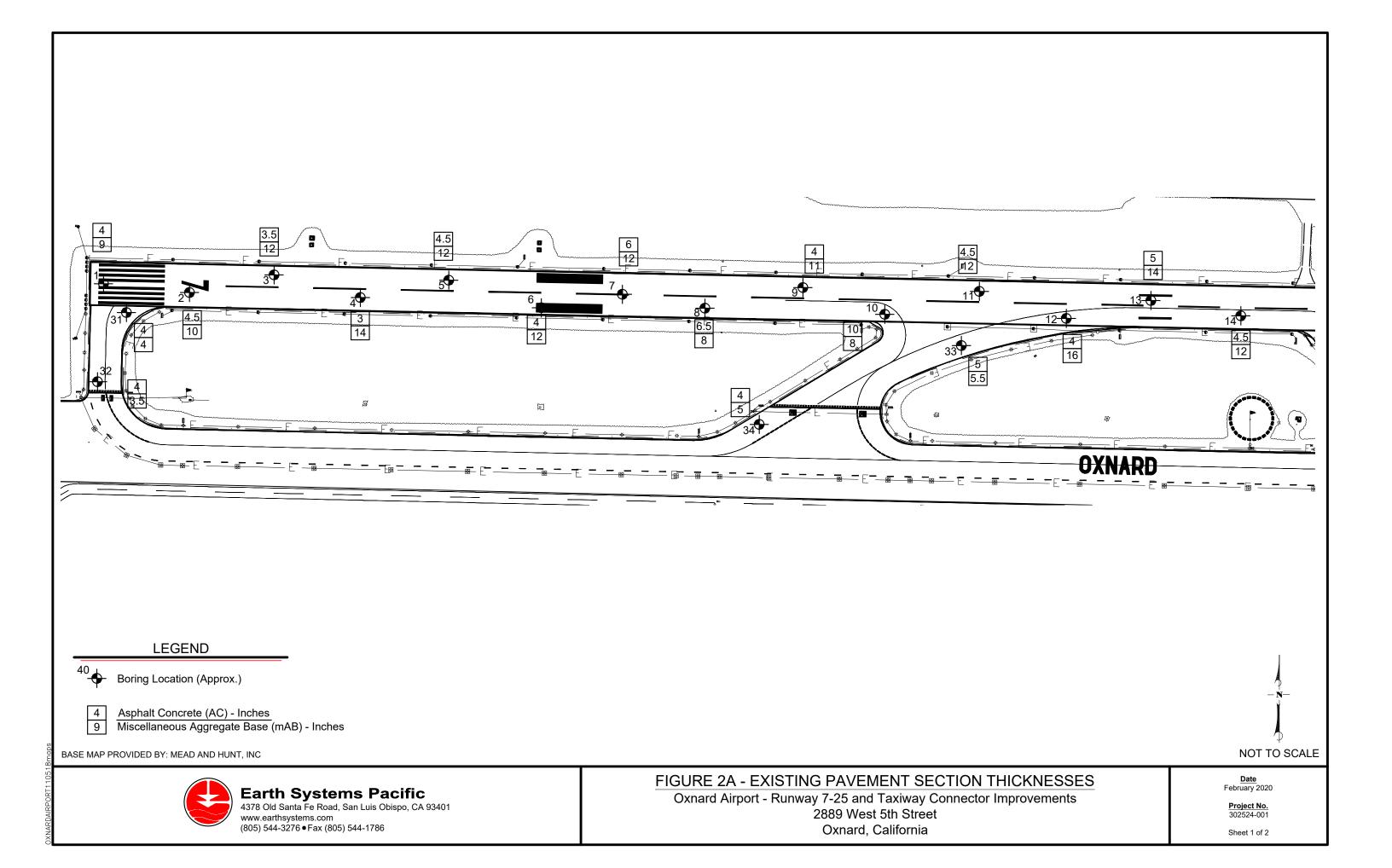

January 8, 2019

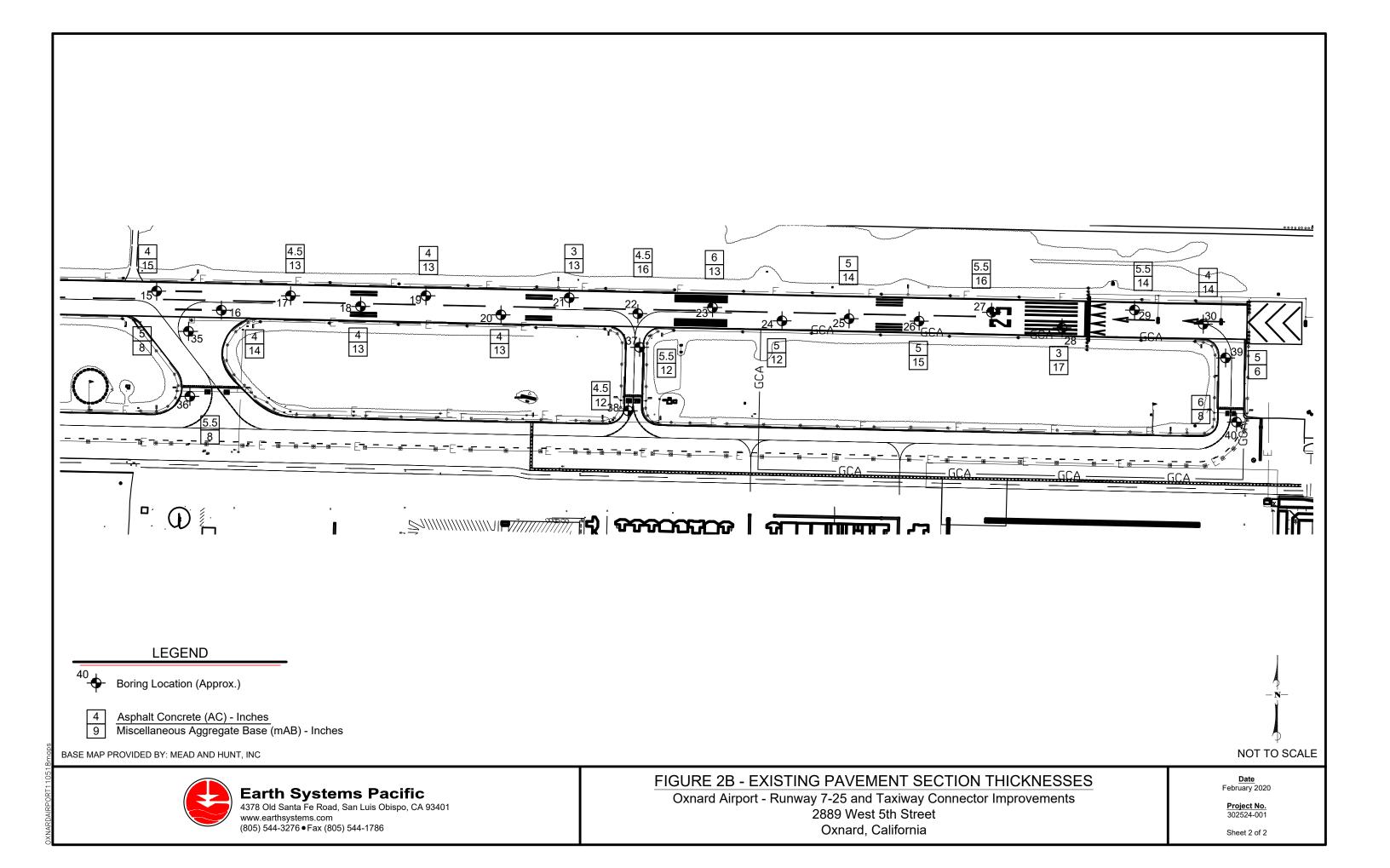
ASTM D 1883-16 (For a Range of Moisture Contents)

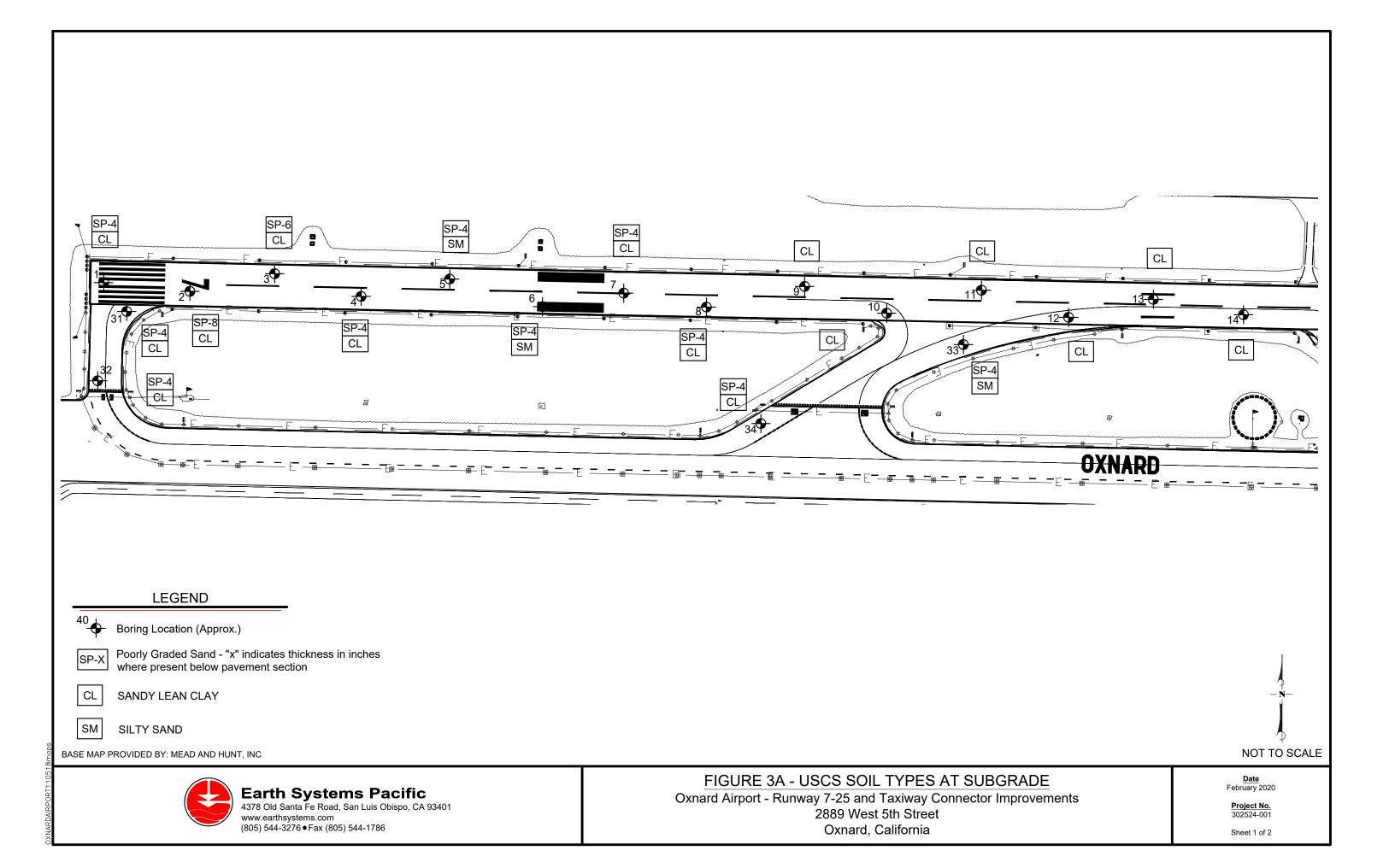
CALIFORNIA BEARING RATIO

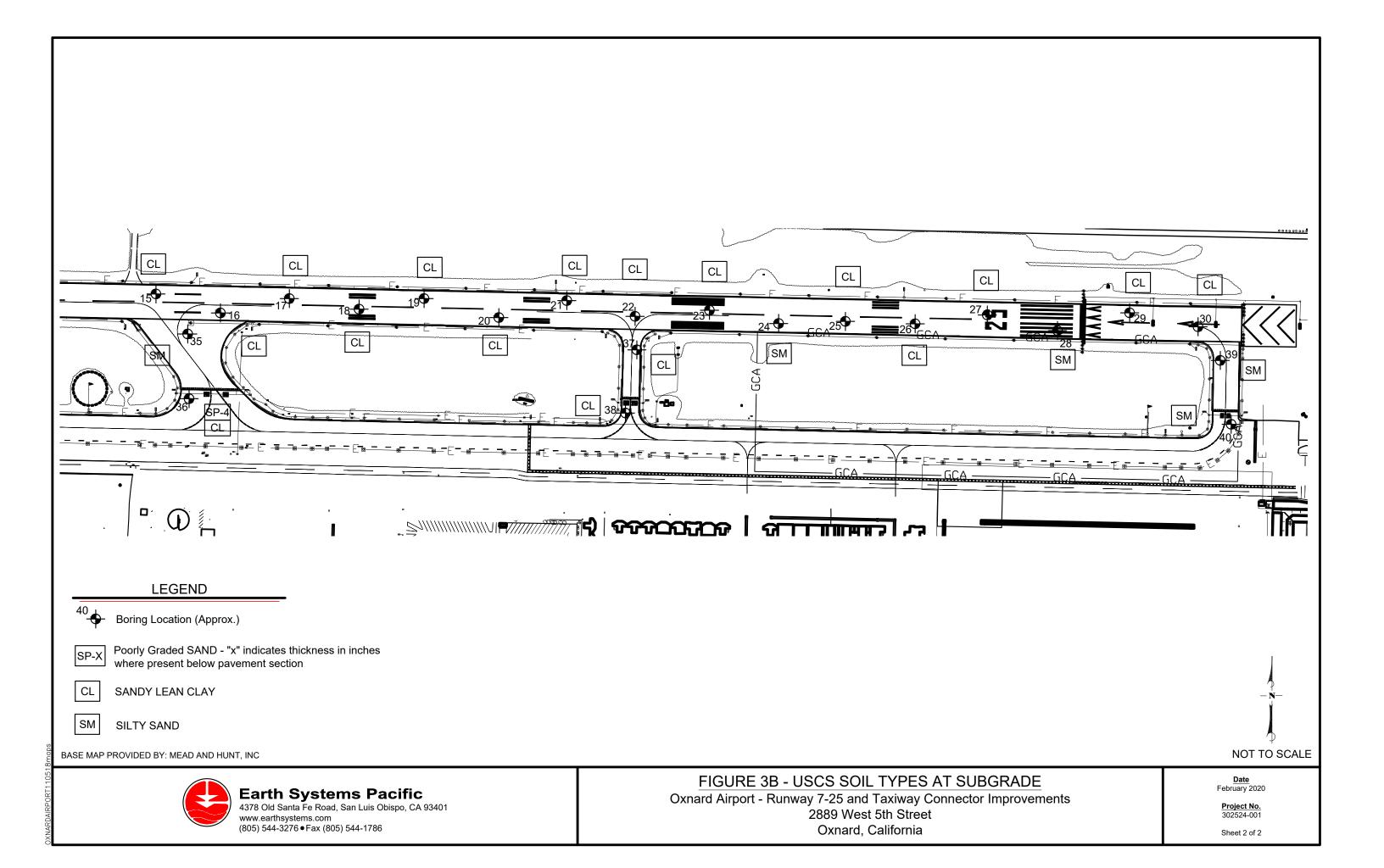
CBR #17; Boring #14 @ 0.5 - 1.5' Brown Silty Sand with Gravel (SM)

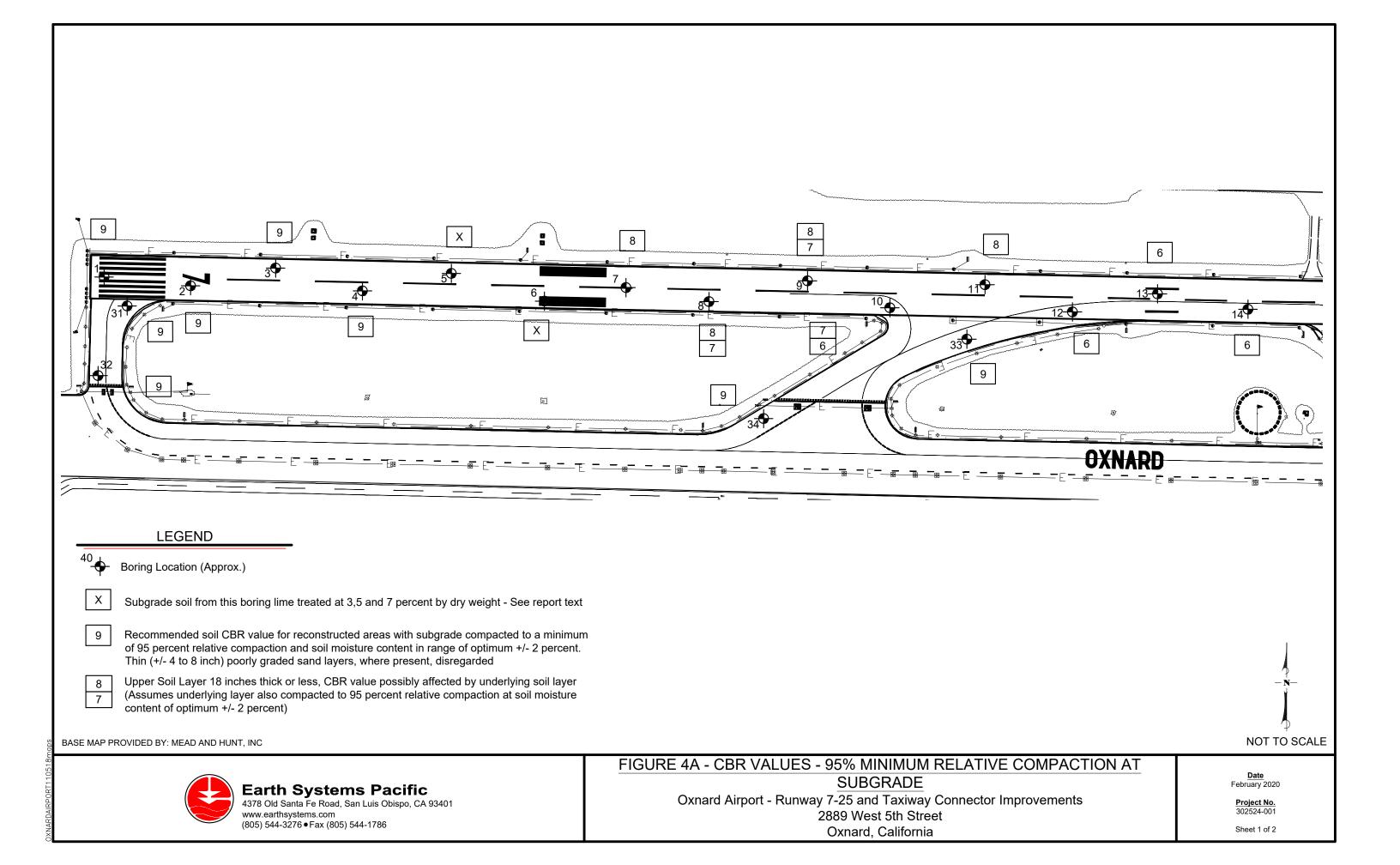
DRY DENSITY vs. CBR Arranged According to Moisture Content

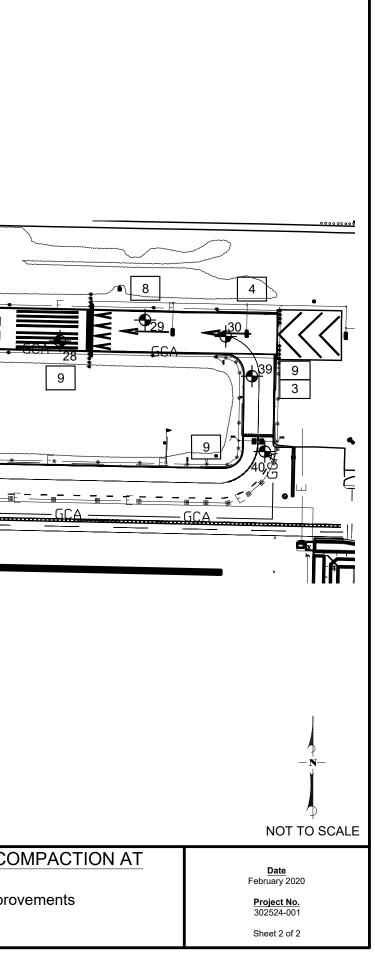

ASTM D 1883-16 (For a Range of Moisture Contents)

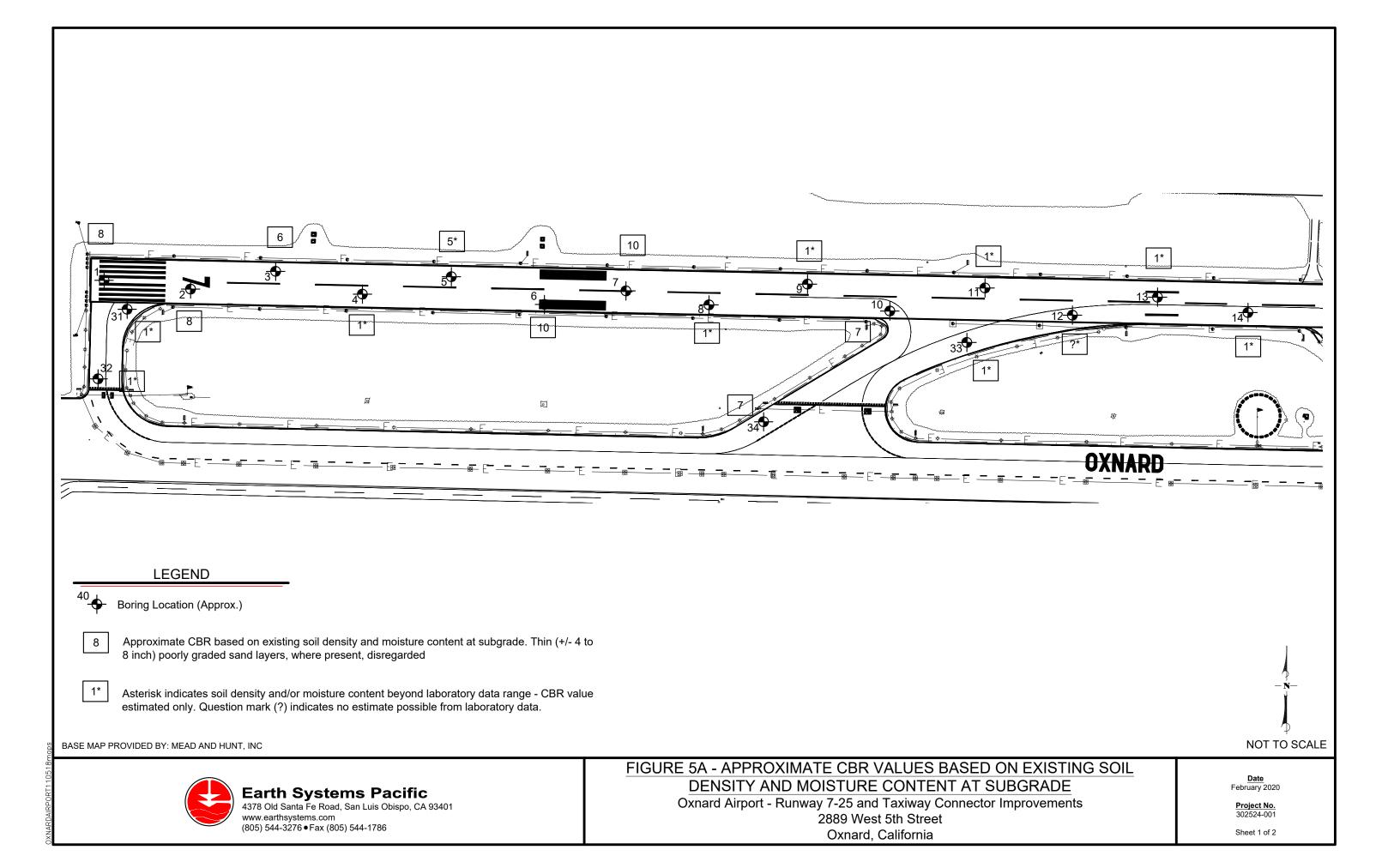

January 8, 2019

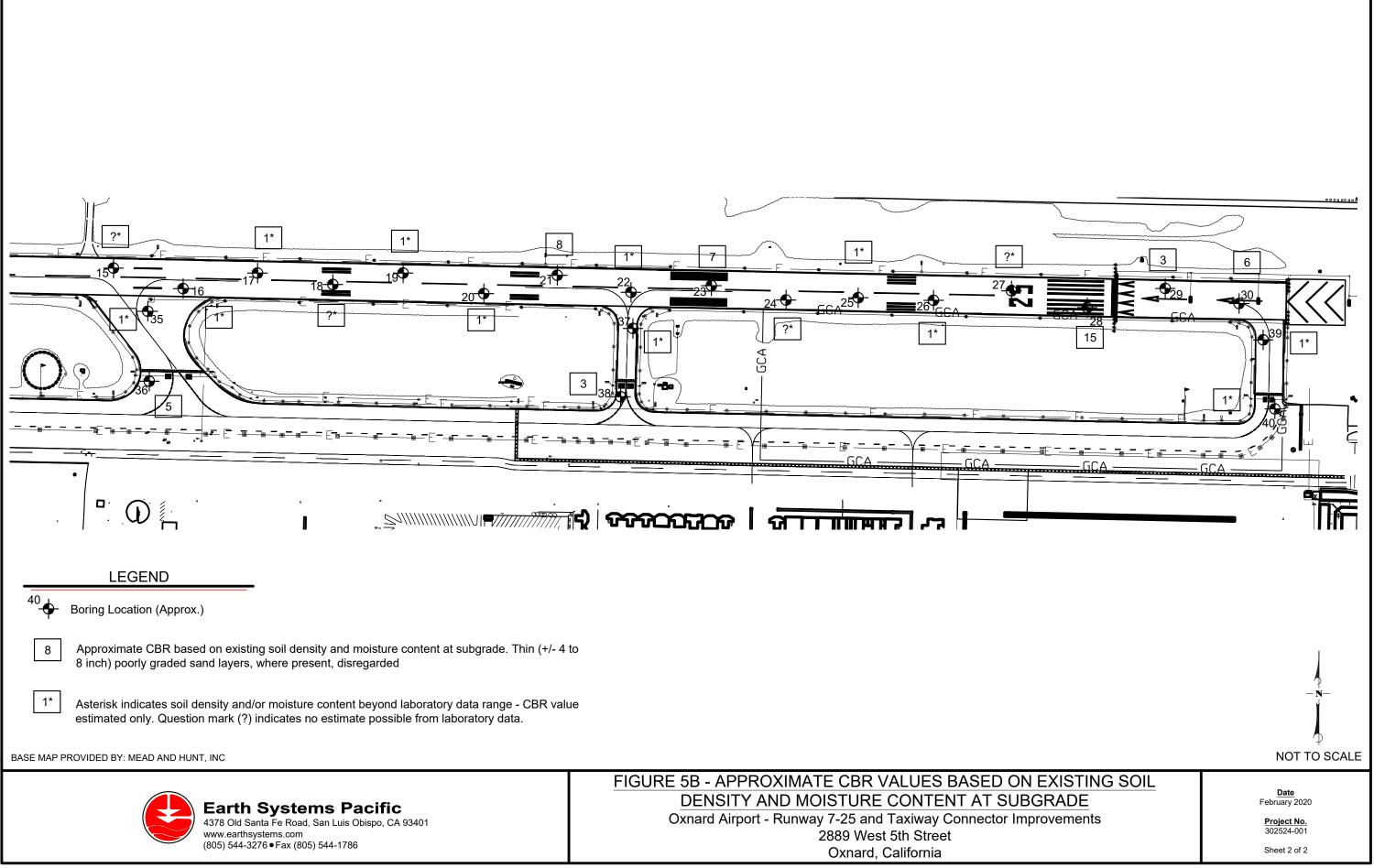

302524-001

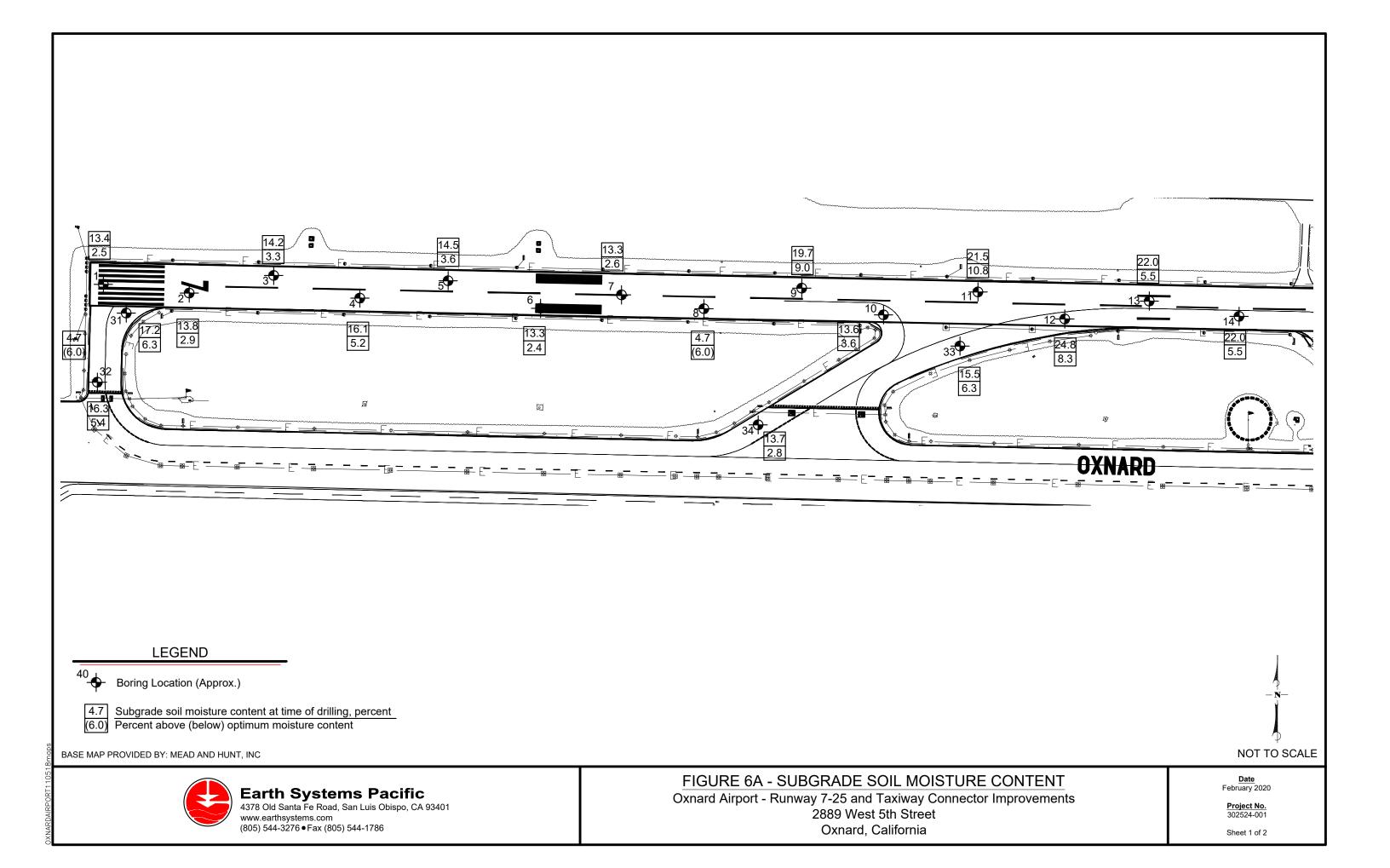

APPENDIX C

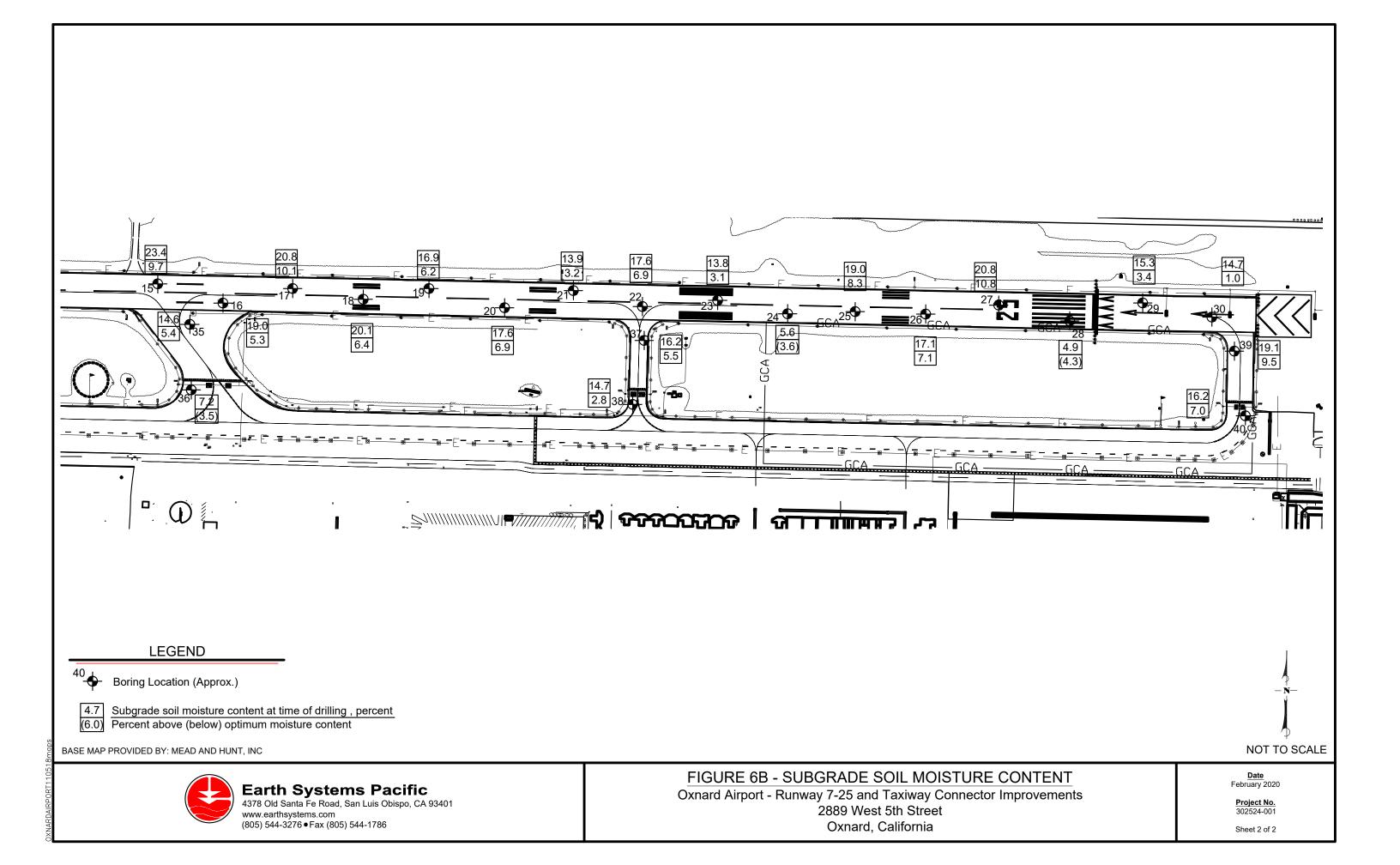

Figures 2a and 2b – Existing Pavement Section Thicknesses Figures 3a and 3b – USCS Soil Types at Subgrade Figures 4a and 4b – CBR Values – 95% Minimum Relative Compaction at Subgrade Figures 5a and 5b – Approximate CBR Values Based on Existing Soil Density and Moisture Content at Subgrade Figures 6a and 6b – Subgrade Soil Moisture Content










LEGEND ⁴⁰ ↔ Boring Location (Approx.) X Subgrade soil from this boring lime treated at 3,5 and 7 percent by dry weight - See report text	
 Recommended soil CBR value for reconstructed areas with subgrade compacted to a minimum of 95 percent relative compaction and soil moisture content in range of optimum +/- 2 percent. Thin (+/- 4 to 8 inch) poorly graded sand layers, where present, disregarded Upper Soil Layer 18 inches thick or less, CBR value possibly affected by underlying soil layer (Assumes underlying layer also compacted to 95 percent relative compaction at soil moisture content of optimum +/- 2 percent) BASE MAP PROVIDED BY: MEAD AND HUNT, INC 	1
Earth Systems Pacific 4378 Old Santa Fe Road, San Luis Obispo, CA 93401 www.earthsystems.com (805) 544-3276 • Fax (805) 544-1786	FIGURE 4B - CBR VALUES - 95% MINIMUM RELATIVE C SUBGRADE Oxnard Airport - Runway 7-25 and Taxiway Connector Impr 2889 West 5th Street Oxnard, California

APPENDIX D

Estimates of Earthwork Shrinkage

OXNARD AIRPORT RUNWAY 7-25 AND TAXIWAY CONNECTOR IMPROVEMENTS 0

ESP File No. 302524-001

Page 1 of 1

Estimates of Soil Shrinkage Using In-Place Density Values from Borings and Assumed Final Relative Compaction Values. All Calculations Based on Uniform Density, Moisture Content and Compaction Effort Negative Values Indicate Expansion (Bulking).

CBR No.	Boring No.	Depth	Material Description	USCS Classification	Maximum Density, pcf	Optimum Moisture, %
1	1	2.0 - 2.5 ft.	Dark Brown Sandy Lean Clay	CL	123.5	10.9
5	36	2.0 - 5.0 ft.	Dark Brown Sandy Lean Clay	CL	121.5	10.7
7	23	3.5 - 5.0 ft	Brown Lean Clay	CL	121.6	10.9
8	29	2.0 - 5.0 ft.	Brown/Gray Mottled Sandy Lean Clay	CL	123.1	11.9
11	16	2.0 - 4.0 ft	Dark Brown Sandy Lean Clay	CL	114.7	13.7
12	13	2.0 - 4.0 ft.	Dark Brown Sandy Lean Clay	CL	112.2	16.5
13	40	1.5 - 3.5 ft.	Brown Silty Sand	SM	126.5	9.2
14	39	2.0 - 5.0 ft.	Brown Sandy Fat Clay	СН	120.4	9.6

Boring	Depth, Ft. Below Ext.	Moisture in Place, %	Dry Density in Place, pcf	Maximum Dens., pcf	Existing Rel.Comp.	at 95.0 %	at 96.0 %	at 97.0 %	at 98.0 %	Shrinkage, % at 99.0 %	at 100.0 %
	Grade	42.4	440.4	400 5	%	Rel. Comp.	Rel. Comp.				
1	2-2.5	13.4	119.4	123.5	96.7	-1.7	-0.7	0.3	1.4	2.4	3.4
2	2.5-3	13.8	121.1	123.5	98.1	-3.1	-2.1	-1.1	-0.1	1.0	2.0
3	2.5-3	14.2	116.9	123.5	94.7	0.4	1.4	2.5	3.5	4.6	5.6
4	2.5-3	16.1	116.2	123.5	94.1	1.0	2.0	3.1	4.2	5.2	6.3
5	2.5-3	14.5	118.3	123.5	95.8	-0.8	0.2	1.3	2.3	3.4	4.4
6	2.5-3	13.3	121.5	123.5	98.4	-3.4	-2.4	-1.4	-0.4	0.6	1.6
7	2-2.5	13.3	121.9	121.5	100.3	-5.3	-4.3	-3.3	-2.3	-1.3	-0.3
8	2-2.5	4.7	118.1	121.5	97.2	-2.3	-1.2	-0.2	0.8	1.9	2.9
9	2.5-3	19.7	102.6	121.5	84.4	12.5	13.7	14.9	16.1	17.2	18.4
10	2.5-3	13.6	115.0	122.5	93.9	1.2	2.3	3.3	4.4	5.5	6.5
11	2.5-3	21.5	104.0	121.5	85.6	11.0	12.2	13.3	14.5	15.7	16.8
12	2.5-3	24.8	95.5	112.2	85.1	11.6	12.8	14.0	15.1	16.3	17.5
13	2.5-3	22.0	101.2	112.2	90.2	5.3	6.4	7.5	8.7	9.8	10.9
14	2.5-3	22.0	102.5	112.2	91.4	4.0	5.1	6.2	7.3	8.4	9.5
15	2.5-3	23.4	100.1	114.7	87.3	8.9	10.0	11.1	12.3	13.4	14.6
16	2.5-3	19.0	109.3	114.7	95.3	-0.3	0.7	1.8	2.8	3.9	4.9
17	2.5-3	20.8	104.8	121.5	86.3	10.1	11.3	12.5	13.6	14.8	15.9
18	2.5-3	20.1	103.2	114.7	90.0	5.6	6.7	7.8	8.9	10.0	11.1
19	2.5-3	16.9	113.4	121.5	93.3	1.8	2.9	3.9	5.0	6.1	7.1
20	2.5-3	17.6	111.7	121.5	91.9	3.3	4.4	5.5	6.6	7.7	8.8
21	2-2.5	13.9	119.5	121.5	98.4	-3.4	-2.4	-1.4	-0.4	0.7	1.7
22	3-3.5	17.6	114.0	121.5	93.8	1.3	2.3	3.4	4.4	5.5	6.6
23	2.5-3	13.8	118.5	121.5	97.5	-2.6	-1.6	-0.5	0.5	1.5	2.5
24	2.5-3	5.6	107.2	126.5	84.7	12.1	13.3	14.5	15.6	16.8	18.0
25	2.5-3	19.0	106.3	121.5	87.5	8.6	9.7	10.9	12.0	13.2	14.3
26	3-3.5	17.1	110.1	122.5	89.9	5.7	6.8	7.9	9.0	10.1	11.3
27	3-3.5	20.8	97.4	122.5	79.5	19.5	20.7	22.0	23.3	24.5	25.8
28	2.5-3	4.9	122.5	126.5	96.8	-1.9	-0.9	0.2	1.2	2.2	3.3
29	2.5-3	15.3	112.5	123.1	91.4	4.0	5.0	6.1	7.2	8.3	9.4
30	2.5-3	14.7	112.2	114.7	97.8	-2.9	-1.9	-0.8	0.2	1.2	2.2
31	2.5-3	17.2	110.6	123.5	89.6	6.1	7.2	8.3	9.4	10.5	11.7
32	2-2.5	16.3	110.8	123.5	89.7	5.9	7.0	8.1	9.2	10.3	11.5
33	2-2.5	15.5	115.3	126.5	91.1	4.2	5.3	6.4	7.5	8.6	9.7
34	2-2.5	13.7	118.4	123.5	95.9	-0.9	0.1	1.2	2.2	3.3	4.3
35	2-2.5	14.6	117.0	126.5	92.5	2.7	3.8	4.9	6.0	7.0	8.1
36	2-2.5	7.2	114.7	121.5	94.4	0.6	1.7	2.8	3.8	4.9	5.9
37	2.5-3	16.2	110.1	121.5	90.6	4.8	5.9	7.0	8.1	9.3	10.4
38	2.5-3	14.7	110.9	123.1	90.1	5.5	6.6	7.7	8.8	9.9	11.0
39	2-2.5	19.1	108.4	120.4	90.0	5.5	6.6	7.7	8.8	10.0	11.1
40	2.5-3	16.2	117.1	126.5	92.6	2.6	3.7	4.8	5.9	6.9	8.0
			Average Shrinka	ge, percent, a	all locations :	3.4	4.5	5.6	6.7	7.8	8.9
						At 95.0 %	At 96.0 %	At 97.0 %	At 98.0 %	At 99.0 %	At 100.0 %
						Rel. Comp.	Rel. Comp.				

GEOTECHNICAL ENGINEERING REPORT OXNARD AIRPORT TAXIWAY F IMPROVEMENTS 2889 WEST 5TH STREET OXNARD, CALIFORNIA MEAD & HUNT, INC. PROJECT NO. 3138400-181115.03

July 10, 2020

Prepared for

Mr. Jeff Leonard, PE Associate Practice Leader Aviation Services Mead & Hunt, Inc.

Prepared by

Earth Systems Pacific 4378 Old Santa Fe Road San Luis Obispo, CA 93401 4378 Old Santa Fe Road | San Luis Obispo, CA 93401 | Ph: 805.544.3276 | www.earthsystems.com

July 10, 2020

FILE NO.: 302524-002

Mr. Jeff Leonard, PE Vice President Mead & Hunt, Inc. 1360 19th Hole Drive, Suite 200 Windsor, CA 95492-7717

Earth Systems

PROJECT: OXNARD AIRPORT TAXIWAY F IMPROVEMENTS 2889 WEST 5TH STREET OXNARD, CALIFORNIA MEAD & HUNT, INC. PROJECT NO. 3138400-181115.03

SUBJECT: Geotechnical Engineering Report

CONTRACT

REFERENCE: Service Work Order No. 1, Oxnard Taxiway F, by Mead & Hunt, Inc., Referencing Proposal to Provide a Geotechnical Engineering Investigation and Recommendations, Oxnard Airport, Taxiway F Reconstruction, Oxnard, California, by Earth Systems Pacific, Doc. No. 1909-021.PRP, dated September 5, 2019

Dear Mr. Leonard:

As per the referenced Service Work Order, this geotechnical engineering report has been prepared for use in the design of the Taxiway F Improvements Project at Oxnard Airport in Oxnard, California. Boring logs and a boring location map, results of laboratory testing, and conclusions regarding CBR testing, earthwork shrinkage, and subsurface water and soil moisture contents are provided. This final report version incorporates responses to comments received from the client on a draft version issued on February 21, 2020.

We appreciate the opportunity to have provided geotechnical services for this project and look forward to working with you again in the future. If there are any questions concerning this report, please do not hesitate to contact the undersigned.

Sincerel Earth Fred J. Potthast, GE Principal Engineer Hunt, Inc., Attn.: Edoardo Barber, and Jannet Loera Copy to Doc. No.:

TABLE OF CONTENTS

	COVER LETTER	ii
1.0	INTRODUCTION	. 1
2.0	SCOPE OF SERVICES	. 1
3.0	FIELD INVESTIGATION	. 2
4.0	LABORATORY INVESTIGATION	. 3
5.0	GENERAL SUBSURFACE PROFILE	. 3
6.0	CONCLUSIONS	. 4
	Existing Pavement Sections and Miscellaneous Aggregate Base	. 4
	CBR Test Results	. 5
	Swelling Soils	
	Earthwork Shrinkage	. 9
	Subsurface Water and Soil Moisture Contents	10
	Soil Erodibility	12
7.0	OBSERVATION AND TESTING	12
8.0	CLOSURE	14
TECHN	NICAL REFERENCES	15

APPENDICES

Appendix A	Figures 1A and 1B – Exploration Location Maps Boring Log Legend Boring Logs
Appendix B	Laboratory Test Results
Appendix C	 Figures 2A and 2B – Existing Pavement Section Thicknesses Figures 3A and 3B – USCS Soil Types at Subgrade Figures 4A and 4B – CBR Values – 95% Minimum Relative Compaction at Subgrade Figures 5A and 5B – Approximate CBR Values Based on Existing
	Soil Density and Moisture Content at Subgrade Figures 6A and 6B – Subgrade Soil Moisture Content

Oxnard Airport Taxiway F Improvements

1.0 INTRODUCTION

This geotechnical engineering report has been completed for the client's use in the development of a preliminary pavement design for Taxiway F at Oxnard Airport in Oxnard, California. Previous investigations of the pavement on the Airport were provided by this firm (ESP 2015 and 2020) and by Miller Geosciences, Inc. (Miller 2014). Based on those reports, the existing pavement sections are known to consist of varying thicknesses of asphalt concrete (AC) over varying thicknesses of aggregate base (AB). Taxiway F is currently in regular use.

In general, this report contains logs of the subsurface conditions encountered in our exploratory borings, the results of laboratory tests, and conclusions regarding CBR testing, earthwork shrinkage, and subsurface water and soil moisture contents. We understand that this report, and the previous investigations, will be used by the client and the owner to determine if rehabilitation or reconstruction of Taxiway F will be necessary.

2.0 SCOPE OF SERVICES

The scope of work for this geotechnical engineering report included a general site reconnaissance, subsurface exploration, laboratory testing of soil samples, engineering evaluation of the data collected, and the preparation of this report. The investigation and subsequent recommendations were based on information and base maps provided by the client.

The report and recommendations are intended to be in general accordance with AC 150/5320-6F (FAA 2016), the client's requested work scope, and common geotechnical engineering practice in this area under similar conditions at this time. The tests were performed in general conformance with the standards noted, as modified by common geotechnical engineering practice in this area under similar conditions at this time.

It is our intent that this report be used exclusively by the client to determine if rehabilitation or reconstruction of the taxiway will be necessary. The information may also be used to develop plans for future projects; however, no other specific projects are planned at this time. Application beyond these intents is strictly at the user's risk. As there may be geotechnical issues yet to be resolved, the geotechnical engineer should be retained to provide consultation as the project progresses, to assist in verifying that pertinent geotechnical issues have been addressed and to aid in conformance with the intent of this report. In the event this report is used to develop project plans, it may also be advantageous to retain the geotechnical engineer to review the grading and drainage plans as they near completion to further aid in conformance of the plans with the intent of this report.

Oxnard Airport Taxiway F Improvements

This report does not address issues in the domain of the contractor such as, but not limited to, site safety, excavatability, shoring, temporary slope angles, construction methods, etc. Analysis of site geology and of the soil for corrosive potential, radioisotopes, asbestos (either naturally occurring or in man-made products), lead or mold potential, hydrocarbons, or other chemical properties are beyond the scope of this investigation. Ancillary features beyond the pavement areas covered by this report are also not within our scope and are not addressed.

In the event that there are any changes in the nature of the work scope, or if any assumptions used in the preparation of this report prove to be incorrect, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and the conclusions of this report modified or verified in writing.

3.0 FIELD INVESTIGATION

On October 8 through October 11, 2019, a total of 30 borings were drilled on Taxiway F during night-shift closure periods. The borings were designated as Nos. 41 through 70, continuing the sequence started for the Runway 7-25 and Taxiway Connector Improvements Project Geotechnical Engineering Report by this firm (ESP 2020). The borings were extended to a maximum depth of 10.0 feet below the existing pavement surfaces with a Mobile Drill rig, Model B-53, equipped with 6-inch outside diameter hollow stem auger and an automatic hammer for sampling. The approximate locations of the borings are shown on the Exploration Location Maps – Figures 1A and 1B, in Appendix A.

The boring locations, which were provided to us on a base map by the client, were identified and marked in the field during a site visit with airport staff on September 27, 2019. During the field meeting, the general areas of all requested boring locations were determined by airport staff to be clear of underground utility lines, with only slight adjustments in a few locations made to increase setback distances.

As the borings were drilled, soil samples were obtained using a 3-inch outside diameter ring-lined barrel sampler (ASTM D 3550-17 with shoe similar to D 2937-17) at approximate subgrade elevation. Standard penetration tests (SPT) using a 2-inch outside diameter split-spoon sampler were also performed in the borings (ASTM D 1586-11) from 5 to 6.5 feet and from 8.5 to 10.0 feet in each boring. Bulk samples were secured from the auger cuttings.

The pavement sections at each boring location were noted by direct measurement of the material layers in the boring. The soils underlying the pavement sections were initially classified

Oxnard Airport Taxiway F Improvements

and logged in general accordance with the Unified Soils Classification System (ASTM D 2488-17). Final classifications of the soils in accordance with the Unified Soils Classification System (ASTM D 2487-17) were made following completion of laboratory testing. Copies of the boring logs and a boring log legend can also be found in Appendix A. In reviewing the boring logs and legend, the reader should recognize that the legend is intended as a guideline only, and there are a number of conditions that may influence the soil characteristics as observed during drilling. These include, but are not limited to, cementation, variations in soil moisture, presence of groundwater, and other factors. Consequently, the logger must exercise judgment in interpreting soil characteristics, possibly resulting in soils descriptions that vary somewhat from the legend. Following completion of drilling, the borings were backfilled with cement-treated auger spoils and gravel, and then patched at the surface with cold-mix AC (Instant Road Repair by International Roadway Research).

4.0 LABORATORY INVESTIGATION

In situ moisture content and unit dry weight (ASTM D 2937-17, as modified for ring liners) were determined for the ring samples. Six untreated bulk samples were tested for the following: maximum density and optimum moisture (ASTM D 1557-12, modified), particle size distribution (ASTM D 422-63/07; D 1140-17), plasticity index (ASTM D 4318-17), and CBR (ASTM D 1883-16, for a range of moisture contents, with ASTM D 1557-12 as the reference standard for maximum density). Two additional bulk samples were tested for the same series of parameters, except that CBR testing was completed with the soils lime treated at 5 percent by dry weight of soil and 3 percent above optimum moisture content only. One other bulk sample was tested for maximum density and optimum moisture (ASTM D 1557-12, modified) only, and three other bulk samples were tested for particle size distribution (ASTM D 422-63/07; D 1140-17) and plasticity index (ASTM D 4318-17) only. Please refer to Appendix B for the laboratory test results.

5.0 GENERAL SUBSURFACE PROFILE

Variations in the thicknesses of the existing pavement sections were observed throughout the borings drilled in the project area.

The AC thicknesses found in the borings varied from as little as 2 inches in Boring 51, to as much as 6 inches in Borings 41 and 58. The majority of the thicknesses measured in the other borings varied from 4 to 5.5 inches. The miscellaneous aggregate base (mAB) supporting the AC varied from 2.5 inches in Boring 55, to as much as 10 inches found in Boring 50.

The pavement sections found in each of the borings are noted on Figures 2A and 2B - Existing Pavement Section Thicknesses, in Appendix C.

Below the pavement sections, layers of well graded sand with varying percentages of silt and gravel, and varying in thickness from 6 to 14 inches, were found in 20 of the 30 borings drilled for this project. Below the well graded sand, and below the pavement sections in all other borings, the underlying soil was sandy lean clay fill, which extended to depths ranging from 4 to 7 feet below the existing pavement surfaces. The consistency of the clays during drilling ranged from soft to very stiff.

Alluvium was found below the fill in all of the borings, to the maximum depth explored of 10 feet below the existing pavement surfaces. The alluvium consisted of very soft to stiff sandy lean clay and sandy silt, and loose silty clayey sand. A layer of loose poorly graded sand was found in Boring 70 from 4.5 to 6 feet.

The soils were described during drilling as being slightly moist to very moist. Subsurface water was not encountered in any of the borings, to the maximum depth explored of 10 feet below the existing pavement surface. However, caliche deposits, a residual mineral in the soil indicating the past presence of subsurface water, were found at various depths in 14 of the 30 borings drilled for this project.

Please refer to the logs in Appendix A for a more complete description of the subsurface conditions found in the borings.

Figures 3A and 3B – USCS Soil Types at Subgrade, in Appendix C, is a summary of the soil types found at or within 1.5 feet of subgrade (i.e., below the pavement sections) in the borings. The well graded sand layers, where found directly below the pavement sections, are also indicated on Figures 3A and 3B.

6.0 CONCLUSIONS

Existing Pavement Sections and Miscellaneous Aggregate Base

The existing pavement sections found in the borings were variable, with the thicknesses of the AC ranging from 2 inches to 6 inches. The miscellaneous aggregate base (mAB) supporting the AC varied from 2.5 inches to 10 inches. No pattern was evident with respect to the thicknesses of the AC or mAB across the project area.

The well graded sand (with variable percentages of silt and gravel) layers found in 20 of the 30 borings appeared to be leveling courses, and it is unclear if they were considered to be part of the overall pavement section when constructed. The material did appear to be from either a production quarry or some other relatively uniform.

The mAB found below the AC in all borings was not uniform and varied from clayey sand with gravel to silty sand with gravel, similar to the material found during our investigation for the Runway 7-25 and Taxiway Connector Improvements Project (ESP 2020). The mAB did not appear to be consistent with typical FAA P-209 or Caltrans Class 2 aggregate base material. Therefore, for the purposes of this report, the material was classified as "miscellaneous aggregate base (mAB)."

CBR Test Results

The laboratory test results indicate variability of the CBR values of the soils based on their USCS type and on their moisture contents. The CBR test results have been summarized on Figures 4a, 4b, 5a and 5b in Appendix C, and the following paragraphs are a discussion regarding use of the data on the maps. Determinations of the actual CBR values and elastic modulus (E) values to be used in either the design for reconstruction of pavement, or the evaluation for rehabilitation of existing pavement, are to be made by the project engineer.

Per AC 150/5320-6F (FAA 2016), Chapter 2.5.3, for flexible pavements, the elastic modulus E can be estimated from CBR test results using the following correlation: E (psi) = 1500 x CBR.

Reconstructed Pavement over Existing Soils

In general, the laboratory CBR test results indicate variations in the strengths of the soils tested based on their density and their moisture content. Variations in the CBR values were noted when moisture contents were above or below optimum moisture content for most of the samples. The summary of CBR values provided in the following paragraph is based on the assumption that the subgrade soils will be recompacted within a moisture conditioned range extending from 2 percent below optimum moisture content to 2 percent above optimum moisture content. If the subgrade soils are not maintained within this range, a reduction in the CBR value will occur. Assuming the CBR values provided in this report for pavement section reconstruction will be utilized for design, the project plans should fully indicate the relatively narrow moisture content range as a specification requirement, to allow the contractor to plan earthwork operations accordingly. Provisions should also be taken (e.g., proper surface drainage and flowlines away

from edges of pavement, regular maintenance of the pavement surface to fill any cracks that develop, etc.) to ensure that the moisture contents of the subgrade soils remain within the design range for the design life of the pavement sections. As noted in the "Subsurface Water and Soil Moisture Contents" Section below, edge drains should be considered to help maintain soil moisture contents following construction.

For fully reconstructed conditions, where the existing pavement sections will be removed and the underlying soils can be moisture conditioned and recompacted, the CBR values of the subgrade soils can be increased in some areas from their in situ conditions. However, where the existing conditions are already very well compacted or where a significant thickness of well graded sand fill was present, a decrease in the effective CBR value at that location could occur with moisture conditioning and recompaction to a lesser value than the existing conditions, or if the well graded sand fill was removed to expose the underlying sandy lean clay. The most important soil condition achieved with complete reconstruction will be uniformity of subgrade moisture and density. Per FAA AC 150/5320-6F, the degree of relative compaction required at subgrade for any pavement areas where complete reconstruction will be undertaken (and therefore the CBR value that can be used in the reconstruction design) is based on the cohesive/non-cohesive classification of the subgrade soils. Except for the variable thickness layers of well graded sand fill found directly below the pavement in many of the borings, the soils encountered at the site are considered cohesive (plasticity index of 3 or greater, per FAA AC 150/5320-6F, Chapter 3.9.3). Also per FAA AC 150/5320-6F, cohesive soils are required to be compacted at subgrade to a minimum of 95 percent of maximum dry density. Based on previous discussions with the client, given the scattered and inconsistent nature of the well graded sand fill, it was decided to consider all of the subgrade soils on the site as being cohesive, with a compaction standard of 95 percent of maximum dry density.

Figures 4A and 4B in Appendix C are summaries of the CBR values expected at the boring locations, based on the results of our laboratory testing and assuming the soils are compacted to a minimum of 95 percent of maximum dry density within 2 percent of optimum moisture content. Based on previous discussions with the client and reviewing the current laboratory CBR test results and previously developed information (ESP 2020), it is our opinion that an "approximate average" CBR value of 8 can be used in the design of reconstructed pavements for this project. If it is desired to further optimize the pavement design, the design CBR can be increased to 13 for the eastern end of the project area (i.e., the area of Borings 66 through 70).

Reconstructed Pavement over Lime Treated Soil

To provide better subgrade CBR values and to reduce the design section where pavement will be fully reconstructed, lime treatment can be utilized. The existing pavement sections (asphalt concrete - AC and miscellaneous aggregate base - mAB) can also be pulverized/milled in place and mixed with the subgrade, to reduce or even eliminate off-haul and disposal from demolition, and to provide a stronger subgrade material than the native soils. Milled pavement section material should be thoroughly mixed with the native soils using disks or other suitable equipment, prior to shaping to provide the design crowned subgrade section. Final mixing of the materials after shaping will be completed during the lime treatment process by pugmills. Lime treatment of the native soils mixed with milled AC/mAB material will likely provide a superior subgrade material for support of new pavement, when compared to untreated native soils, or to lime treated native soils without milled AC/mAB.

Samples of the subgrade soils only (without milled AC/mAB) from Boring 45 and Boring 62 were tested for CBR value with a lime treatment percentage of 5 percent by dry weight of soil, and at 3 percent above optimum moisture content. The lime treatment percentage was selected based on previous lab test results for the Runway 7-25 and Taxiway Connector Improvements Project (ESP 2020), and discussions with the client and a lime treatment contractor. The lime treatment percentage, as well as the moisture content at test, were also selected based on sulfate testing that was completed in parallel with the CBR tests. The results of the sulfate testing are provided under separate cover. Based on the laboratory test results, the CBR values for the site soils lime-treated at a minimum of 5 percent by dry weight, compacted to a minimum of 95 percent of maximum dry density, and with moisture contents as high as 3 percent over optimum, are expected to range from 40 to 50. If utilized, the lime treated soil layer should be 12 to 16 inches thick. A thicker section may be appropriate for areas of the site where in situ soil moisture contents are well above optimum and construction equipment traffic may cause instability. The actual thickness of lime treated soil to be utilized should be determined by the engineer.

If the existing pavement sections are milled and stockpiled for later reuse as mAB, it is anticipated that some or all of the well graded sand with silt and gravel layers found in 20 of the 30 borings drilled for this project will be removed in the process. To maintain uniformity for the lime treatment process, any well graded sand and/or mAB layers remaining after the milling process should be removed from the lime treatment zone and properly disposed off site or reused where acceptable on site. Alternately, if the quantity of well graded sand and/or mAB in the lime

treatment zone is significant, the additive can be switched from lime to cement. The need to make this switch should be determined based on the conditions exposed at the time of construction.

CBR Value for Existing Miscellaneous Aggregate Base (mAB)

A sample of the miscellaneous aggregate base (mAB) from Boring 46 was also tested for CBR. As previously discussed with the client, considering its variability, it was decided that the mAB material was not consistent enough to be able to assume with any certainty that it would be capable of being compacted to 100 percent of maximum dry density with a reasonable amount of effort. Based on the test data, an approximate CBR value of 30 is recommended for the mAB material compacted to a minimum of 95 percent of maximum dry density within two percent of optimum moisture content.

Rehabilitation of Existing Pavements

Figures 5A and 5B in Appendix C show the estimated CBR values of the subgrade soils at each boring location, based on their existing density and moisture contents, and on the results of the laboratory CBR tests. Note that in 4 of the 30 borings, the existing soil moisture contents and/or densities were beyond the range of the data from the laboratory CBR tests; those locations are marked on the map with an asterisk. Where the CBR information appeared to follow a trend line beyond the data range, a rough estimate of the CBR value was provided. Where the soil moisture contents and/or density values were well out of the data range or did not appear to follow a trend line at all, no CBR value was provided, and the location was indicated with a question mark (?). Based on previous discussions with the client, and considering the variability of the in situ moisture, density and CBR test results, it is our opinion that a CBR value of only 1 or 2 should be used for the subgrade in its existing condition when evaluating the potential for rehabilitation of the existing pavement in the center and on the end of the taxiway (i.e., the vicinity of Borings 51 through 70). For the western portion of the taxiway (i.e., vicinity of Borings 41 through 50), the CBR value utilized for the evaluation could be increased to 5 or 6.

As noted in the "Subsurface Water and Soil Moisture Contents" Section below, edge drains should be considered to help maintain soil moisture contents following construction.

Swelling Soils

AC 150/5320-6F (FAA 2016) Chapter 3.10.1 describes the effects that swelling soils have on airport pavements, and recommends various treatments (removal and replacement, stabilization, modified compaction efforts and adequate drainage) to reduce the potential for damage to pavements due to swelling soils.

Chapter 3.10.2 (FAA 2016) indicates swelling soils "usually have liquid limits above 40 and plasticity indexes above 25." None of the soils tested for this project meet these criteria.

Chapter 3.10.3 (FAA 2016) indicates soils with a swell of greater than 3 percent when tested for CBR require treatment to reduce the potential for damage to pavements. Only one sample exhibited a swell of greater than 3 percent when tested for CBR value:

 Boring 66 from 4.0 to 5.0 feet. Expansion values ranged from 5.3 to 6.8 percent after soaking for the samples compacted at 3 percent below optimum moisture content. Samples compacted at optimum moisture content exhibited expansion values of 1.5 to 3.9 percent after soaking. Samples compacted at 3 percent above optimum exhibited expansion values of 0.9 percent or less after soaking.

Chapter 3.10.1 (FAA 2016) states "Local experience and judgment should be applied in dealing with swelling soils to achieve the best results." The material utilized for CBR testing from Boring 66 that exhibited swell in excess of 3 percent was found in the following borings: Boring 62 from 5.0 to 10.0 feet; Borings 63 through 69 from 4.0 to 10.0 feet; and in Boring 70 from 6.0 to 10 feet. It is our understanding that the pavement at Oxnard Airport does not exhibit pervasive evidence of damage due to swelling soils, i.e., significant edge cracking or random surface unevenness. Due to the lack of existing apparent damage due to swelling soils, and as this material was identified at depths of 4.0 feet or greater, in our opinion it is probably not worth considering in a standard pavement rehabilitation process (i.e., reconstruction with a conventional pavement section over compacted native soil, or rehabilitation of the existing pavement in place).

If the engineer elects to lime treat the native soils for the reconstruction process, the lime treatment will neutralize whatever potential swelling soils may be present in the subgrade treatment zone and no additional action would be necessary.

Earthwork Shrinkage

Soil volume loss, or "shrinkage", during earthwork can be attributed to three categories; soil loss due to stripping or demolition of existing improvements, subsidence of the underlying soils due to compaction, and shrinkage of fill soil as it is placed and compacted. These factors are partly due to the soil characteristics, but largely due to depths of cuts and fills, stripping techniques, type and weight of earthwork equipment, traffic pattern of earthwork equipment, and soil moisture at the time of grading.

In paved areas that are to be reconstructed, removal of distinct AC and AB layers can result in less loss than from removal of vegetation in unpaved areas, if any. The amount of soil loss that will occur is largely dependent upon how careful the contractor is in stripping and demolition/removal operations.

Subsidence of the site due to compaction of the soils below a fill area also occurs. Subsidence due to compaction is likely to be in the range of 0.1 to 0.2 feet. The main zone of subsidence is typically the upper two to three feet. Deeper subsidence is not expected as earthwork operations for pavement reconstruction are expected to be limited to the upper 1 to 2 feet in the project area.

To estimate shrinkage of the subgrade, *in situ* soil density data from ring samples taken in the borings at approximate subgrade elevation were analyzed. Appendix D contains a summary of the existing relative compaction at each depth where a ring sample was secured, as well as calculated shrinkage assuming final relative compaction values ranging from 95 to 100 percent.

As loss, subsidence, and shrinkage are only partly due to the soil characteristics, and are largely influenced by the earthwork equipment, earthwork methods, and soil moisture, these factors cannot be precisely estimated.

Subsurface Water and Soil Moisture Contents

Subsurface water was not encountered in any of the borings to the maximum depth drilled of 10 feet below the existing pavement surface. However, caliche deposits, a residual mineral in the soil indicating the past presence of subsurface water, were found at various depths in 14 of the 30 borings drilled for this project. Caliche is an indicator that significant soil moisture contents have been present in the past. If soil moisture contents are well above optimum in pavement areas to be reconstructed, the soils could become unstable under equipment traffic. Unstable conditions hinder compaction efforts and are not acceptable to support fill or pavement section placement. All grading areas should be firm and unyielding following compaction operations and prior to placement of fill, aggregate base or pavement.

Depending on the time of year that construction operations take place, the most effective methods to deal with unstable conditions due to high soil moisture could be scarification and aeration, or the use of geotextile stabilization fabrics. Scarification and aeration may only be possible if the weather conditions are clear and if the project schedule permits.

If the project schedule will not allow drying of the soil naturally, stabilization fabric could be

utilized. Additional excavation below subgrade may also be needed before the stabilization fabric is placed; the depth of overexcavation should be determined by the geotechnical engineer based on conditions exposed at the time of construction. After all excavations are complete, and prior to placement of the geotextiles, the exposed surfaces are typically back-dragged to a smooth condition to the degree practicable with light earthwork equipment. Geotextile stabilization fabric (Mirafi RS380i or similar material depending on the degree of instability) is typically placed in the excavated area and extended up the sidewalls of the excavation to within 2 inches of the bottom of the AC layer. Stabilization fabrics are rolled out along the long dimension of the reconstruction area (not perpendicular to it), and are stretched, overlapped and held in place according to the manufacturer's recommendations. Recycled subbase and/or imported aggregate base, per the overall pavement section design, is placed over the fabric in thin, moisture-conditioned lifts and compacted. Recycled subbase and/or aggregate base is placed by end-dumping on the fabric and spreading ahead of equipment; equipment traffic is typically not allowed to travel directly over the fabric. Initial lifts of subbase/base are spread and compacted by rubber-tired equipment; subsequent lifts are compacted using sheepsfoot and/or steel-drum equipment. Compaction equipment is usually operated in static mode only until base grade is reached, to reduce the potential for any free water in the underlying soils to be drawn through the fabric and into the subbase or aggregate base.

If it appears that stable conditions will not be created at base grade after the use of geotextiles, a layer of geogrid (Tensar TriAx TX-7 or similar material) can be placed according to the manufacturer's recommendations as additional reinforcement at the approximate mid-depth of the subbase/aggregate base layer. Often sufficient material may not be in place over the geotextile stabilization fabric at mid-depth of the design subbase/aggregate base layer to fully mobilize its strength characteristics and to determine if geogrid will be needed, therefore it may be necessary to construct a full-scale test strip of the pavement section, with and without geogrid reinforcement. This test strip will give an indication as to whether or not geogrids will be required in any reconstruction areas.

Figures 6A and 6B – Subgrade Soil Moisture Content in Appendix C show the soil moisture contents at the time of our field exploration, and percentage above (or below) optimum moisture content. These data show that in the majority of the boring locations, soil moisture contents were above optimum moisture content, with one location at 9 percent above optimum. As noted in the "CBR Test Results" Section of this report, the CBR values decrease significantly with increasing soil moisture contents. To reduce the potential for accumulated moisture in the

subgrade and the subsequent loss of soil strength (CBR value), positive surface drainage away from all paved areas must be provided. Edge drains adjacent to the pavement are also recommended. The drains could consist of conventional geotextile-wrapped and gravel-filled trenches with perforated collection pipes, or prefabricated panel-type drainage systems that are placed in narrow trenches. The 3- to 4-inch diameter perforated collection pipes in conventional trenches have the advantage of being able to be fitted with cleanouts for system maintenance; however, this could be outweighed by the relatively low cost of a thin panel drain system, as gravel drains require excavation of wider trenches, trench spoil disposal, and gravel placement. The actual type of system to be utilized, if any, should be determined by the engineer. The drains should be placed, wherever practicable, to dewater the upper 2 to 3 feet of soil below the pavement sections.

Soil Erodibility

The site soils are considered to be erodible. It is essential that all surface drainage be controlled and directed to appropriate discharge points, and that surface soils, particularly those disturbed during construction, are stabilized by vegetation or other means during and following construction.

7.0 OBSERVATION AND TESTING

- 1. It must be recognized that the recommendations contained in this report are based on a limited number of borings and rely on continuity of the subsurface conditions encountered. Therefore, the geotechnical engineer should be retained to provide consultation during the design phase, to review plans as they near completion, to interpret this report during construction, and to provide construction monitoring in the form of testing and observation.
- 2. At a minimum, the following should be provided by the geotechnical engineer during construction:
 - Professional observation during grading
 - Oversight of special inspection during grading
- 3. Special inspection of grading should be provided as per the requirements of the FAA or Section 1705.6 and Table 1705.6 of the CBC; the soils special inspector should be under the direction of the geotechnical engineer. Subject to approval by the building official or other jurisdiction, special inspection requirements should be addressed by the

geotechnical engineer during the preconstruction meeting (see below) prior to the start of grading operations.

At a minimum, the following items should be inspected and/or tested by the special inspector:

- Stripping and clearing of vegetation and existing pavement where planned for removal
- Excavations to subgrade in any pavement reconstruction areas, and corrective operations (scarification/aeration or placement of geotextile stabilization fabric) in any unstable areas
- Excavations to subgrade in any pavement reconstruction areas and scarification, moisture conditioning, and recompaction in stable areas
- Fill, milled/pulverized AC (if any) and imported aggregate base quality, placement, moisture conditioning, and compaction
- Utility trench backfill
- 4. A program of quality control should be developed prior to beginning grading. The contractor or project manager should determine any additional inspection items required by the architect/engineer or the governing jurisdiction.
- 5. Locations and frequency of compaction tests should be as per the recommendation of the geotechnical engineer at the time of construction. The recommended test location and frequency may be subject to modification by the geotechnical engineer, based upon soil and moisture conditions encountered, size and type of equipment used by the contractor, the general trend of the results of compaction tests, or other factors.
- 6. A preconstruction conference among the owner, the geotechnical engineer, the governing agency, the special inspector, the project inspector, the architect/engineer, and contractors is recommended to discuss planned construction procedures and quality control requirements.
- 7. The geotechnical engineer should be notified at least 48 hours prior to beginning construction operations. If Earth Systems Pacific is not retained to provide construction

observation and testing services, it shall not be responsible for the interpretation of the information by others or any consequences arising therefrom.

8.0 CLOSURE

Our intent was to perform the investigation in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the locality of this project and under similar conditions. No representation, warranty, or guarantee is either expressed or implied. This report is intended for the exclusive use by the client as discussed in the "Scope of Services" section. Application beyond the stated intent is strictly at the user's risk.

This report is valid for conditions as they exist at this time for the type of project described herein. The conclusions and recommendations contained in this report could be rendered invalid, either in whole or in part, due to changes in building codes, FAA regulations, standards of geotechnical or construction practice, changes in physical conditions, or the broadening of knowledge.

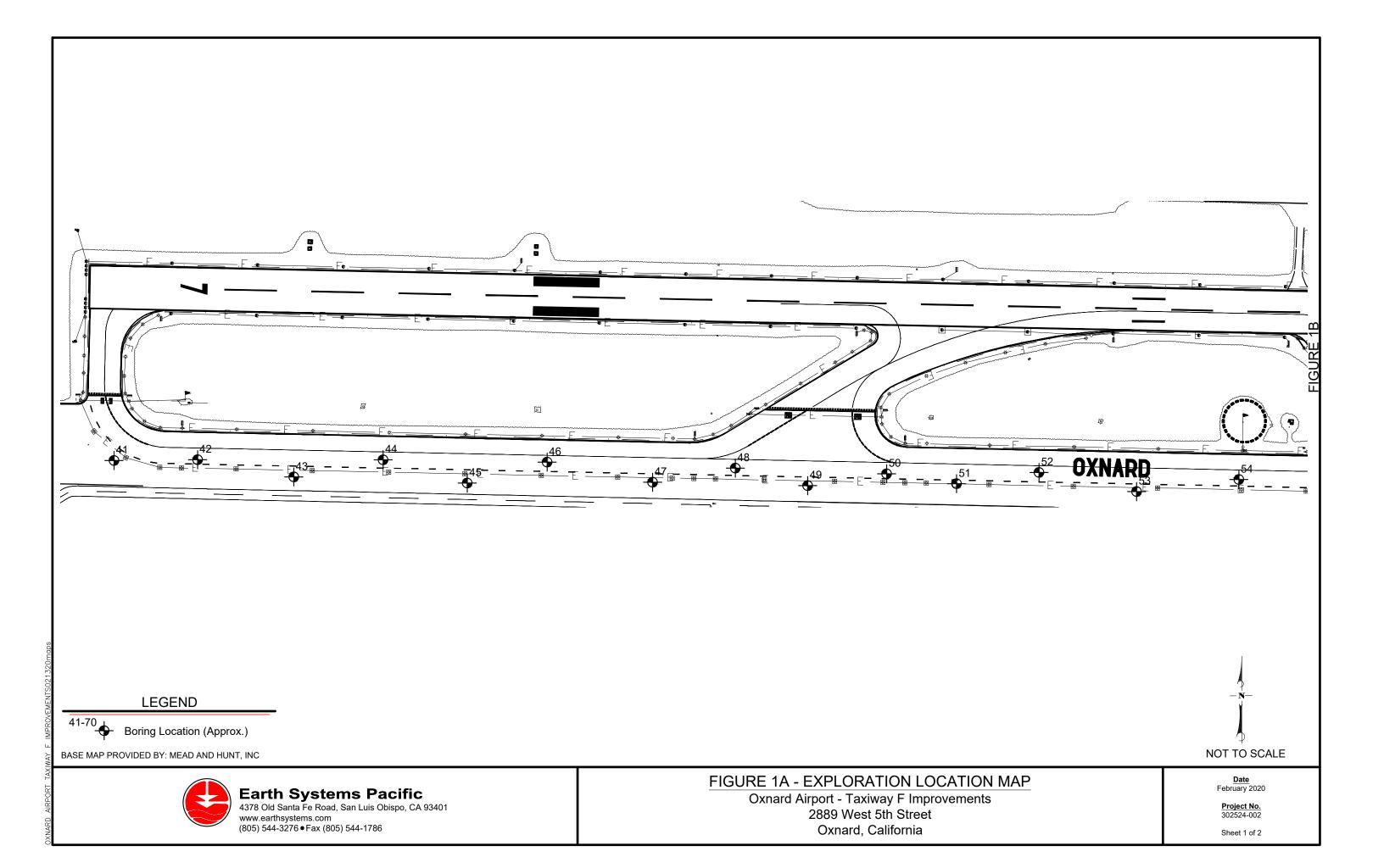
If changes with respect to development type or location become necessary, if items not addressed in this report are incorporated into plans, or if any of the assumptions used in the preparation of this report are not correct, this firm shall be notified for modifications to this report. Any items not specifically addressed in this report should comply with the FAA, the CBC and/or the requirements of the governing jurisdiction.

The preliminary recommendations of this report are based upon the geotechnical conditions encountered at the site and may be augmented by additional requirements of the engineer, or by additional recommendations provided by this firm based on conditions exposed at the time of construction.

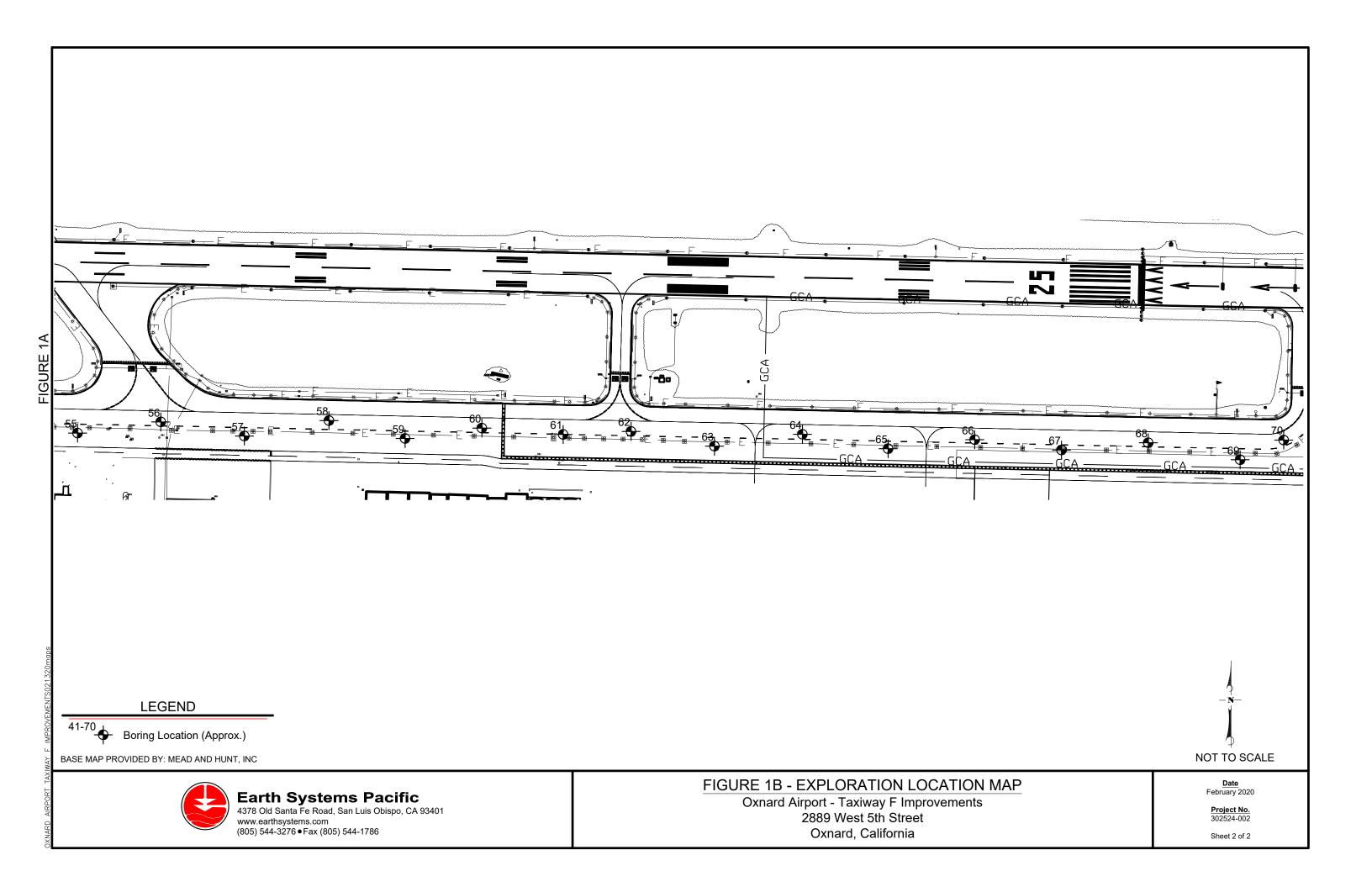
This document, the data, conclusions, and recommendations contained herein are the property of Earth Systems Pacific. This report shall be used in its entirety, with no individual sections reproduced or used out of context. Copies may be made only by Earth Systems Pacific, the client, and the client's authorized agents for use exclusively on the subject project. Any other use is subject to federal copyright laws and the written approval of Earth Systems Pacific.

Thank you for this opportunity to have been of service. If you have any questions, please feel free to contact this office at your convenience.

End of Text.


TECHNICAL REFERENCES

- ESP. (Earth Systems Pacific). December 31, 2015. Geotechnical Engineering Report, Taxiway and Apron PCN Calculations, Oxnard Airport, Oxnard, California. Mead & Hunt, Inc., Project No. 3138400-150628.01
- ESP. (Earth Systems Pacific). July 10, 2020. Geotechnical Engineering Report, Runway 7-25 and Taxiway Connector Improvements, Oxnard Airport, Oxnard, California. Mead & Hunt, Inc., Project No. 3138400-181115.01
- FAA. (U.S. Department of Transportation Federal Aviation Administration). November 10, 2016.Advisory Circular (AC) 150/5320-6F. Airport Pavement Design and Evaluation.
- Miller. (Miller Geosciences, Inc.). August 28, 2014. Preliminary Geotechnical Explorations, Proposed Improvements, Oxnard Airport Runway, 2889 West 5th Street, Oxnard, California.


APPENDIX A

Figures 1A and 1B – Exploration Location Maps Boring Log Legend Boring Logs

INTENTIONALLY BLANK

INTENTIONALLY BLANK

INTENTIONALLY BLANK

				UN	IFIED S	SOIL CLAS	SIFICA		TEM (AS	STM D 2	2487)	
Ear	th Sys	tems Pa	acific	MAJOR DIVISIONS	GROUP SYMBOL		TYPICA	L DESCRIP	TIONS			APH. /IBOL
				S	GW	WELL GRADE	D GRAVEL	S, GRAVEL-S	AND MIXTUF	RES, LITTL		
					GP	POORLY GRA			VEL-SAND		<u> </u>	\bigcirc
P		ING		ED SO MATER 200	GM	SILTY GRAVE			MIXTURES,	NON-PLAS	ѕтіс ₿	Ω.
				LE OF HAN #	GC	CLAYEY GRA	VELS, GRA	VEL-SAND-CI	AY MIXTUR	ES, PLAST	IS	\odot
.				GRAINED SOI HAN HALF OF MATERIAL ARGER THAN #200 SIEVE SIZE	SW	WELL GRADE	D SANDS,	GRAVELLY S	ANDS, LITTL	E OR NO F		
L	EGt	END			SP	POORLY GRA	DED SAND	S OR GRAVE	LLY SANDS,	LITTLE O	R NO	
					SM	SILTY SANDS	. SAND-SIL	T MIXTURES.	NON-PLAST	IC FINES		
SAMPLE / S		FACE	GRAPH.	COARSE MORE T	SC	CLAYEY SAN	-					\mathbb{X}
WATER			SYMBOL	S S	ML	INORGANIC S		/ERY FINE S/	NDS, SILTY	OR CLAY	EY	
CALIFORN	IA MODIFI	IED			CL	FINE SANDS	LAYS OF L	OW TO MEDI	UM PLASTIC	ITY, GRA	VELLY	\mathcal{H}
STANDARD PENE	ETRATION	TEST (SPT)		D S(1ATER #200	OL	CLAYS, SANE	-					\sum
SHELB	BY TUBE			DEI E OF N THAN SIZE	MH	PLASTICITY	ILTS, MICA	CEOUS OR D	IATOMACEO	US FINE S		
В	ULK		\bigcirc	GRAINED SOI OR MORE OF MATERIAL SMALLER THAN #200 SIEVE SIZE	СН	OR SILTY SO	,			AVS		\mathcal{H}
	FACE WA ⁻ IG DRILLIN		T	E G LF OR IS SMA	ОН	ORGANIC CLA						$\overline{77}$
SUBSUR	FACE WA	TER	$\overline{\underline{\nabla}}$		PT	SILTS		VORCANIC	2011 2			
AFTE		NG	=			MOISTURE			50IL5			
DRY		SLIGHT			MO		1	RY MOIS			TURATE	
		SLIGITI				STENCY			I VV		TURAL)
	COARS						F	INE GRAII		s		
	BLOWS/FO	ТС			E TERM		BLOWS	6/FOOT				
SPT 0-10		CA SAMPLE 0-16	ER	LOOSE	1	SPT 0-2		CA SAN 0-1	3	VE	RY SOFT	
11-30 31-50		17-50 51-83		MEDIUM DE DENSE		3-4 5-8		4- 8-1			SOFT	
OVER 50		OVER 83		VERY DEM	NSE	9-15 16-30		14-: 26-			STIFF RY STIFF	
							30	OVE	R 50		HARD	
						51225		R SQUAR			IG	
# 2		# 40		# 10		4	3/4"	3		12"		
π 2	.00	# 40	SAND	#10	π	-	GRAVEL					
SILT & CLAY	FINE	= ,	MEDIUM		RSE	FINE		OARSE	COBBL	ES	BOULDER	١S
		- '										
MAJOR DIVI				TRICAL								
		CORE, FRAG	GMENT, O	REXPOSURE		YPICAL DE			RP PICK; CAI		E CHIPPED	
		CANNOT BE	ATED HEA	AVY HAMMER	BLOWS	ARP PICK; CO						
VERY HA		HAMMER BL		WITH KNIFE	OR SHARF	PICK WITH DI	FFICULTY (HEAVY PRES	SURE); HEA	VY HAMM	IER BLOW	
HARD		REQUIRED	TO BREAK	< SPECIMEN								
MODERATELY						E OR SHARP P ER BLOW OR H KNIFE OR SHA						VITH
SOFT	FT					KNIFE OR SHAL						
VERY SO	rr I	LIGHT MAN	JAL PRES	SURE				,		, ,		
	<u> </u>		T	TPICAL E								
						YPICAL DE	JUNIPI	IUN3				
						TO SURFACE (OF, OR SHO	ORT DISTANC	E FROM. FR	ACTURES	S: SOME	
SLIGHTLY WEA						TO SURFACE						
WEATHER	RED	"RUSTY", FE	LDSPAR	CRYSTALS AF	RE "CLOUI	DY"				.		
MODERAT WEATHER HIGHLY WEAT DECOMPO						OUT; FELDSPA ON PRODUCES						D
DECOMPO	SED	FELDSPAR	AND Fe-M	g MINERALS /	ARE COMP	DUT, BUT RESI	RED TO CL	4Y				_,

\mathbb{E}^{2}	
	/

DRILL RIG: Mobile B-53 with Automatic Hammer

LOGGED BY: S. Hemmer

Boring No. 41 PAGE 1 OF 1 JOB NO.: 302524-002 DATE: 10/8/19

	AU		RIG: Mobile B-53 with Automatic Hammer				DA	302524-00 TE: 10/8/1
	SS		OXNARD AIRPORT TAXIWAY F IMPROVEMENTS		SAI	MPLE D		
(feet)	USCS CLASS	SYMBOL	2889 West 5th Street Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ö		SOIL DESCRIPTION	Z	Ś	DRY	MO	88
0 — -			6.0" AC / 4.0" SILTY SAND with GRAVEL (Misc. AB)					
1 -	CL	$\left \right\rangle$	SANDY LEAN CLAY; dark brown, stiff, moist (Fill)					4
2 -		[1.5 - 3.0		107.9	16.9	5 11
3 - 4				1.5 - 5.0	$ \circ $			
- 5		$\langle \cdot \rangle$	soft	5.0 - 6.5	\bullet			2 0
-								1
7	CL	\bigwedge	SANDY LEAN CLAY; brown, medium stiff, moist					
-		\mathbb{N}	(Alluvium)	8.5 - 10.0				1 2
9 - 0								3
- 1			TD: 10.0' No subsurface water encountered					
2			Backfilled with cuttings and tamped AC Patch					
- 3 -								
4								
5								
6 - 7								
- 8								
-								
-								
- 21								
-								
-								
-								
-								
25 -								
26 -								

LOGGED BY: S. Hemmer

Boring No. 42 PAGE 1 OF 1 JOB NO.: 302524-002

			OXNARD AIRPORT		SAI		DATA			
(feet)	USCS CLASS	SYMBOL	TAXIWAY F IMPROVEMENTS 2889 West 5th Street Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)		BLOWS PFR 6 IN	
			SOIL DESCRIPTION	Z	0	DRY	Ŭ		- 0	
- 0			4.5" AC / 4.5" SILTY SAND with GRAVEL (Misc. AB)							
1	SW		WELL GRADED SAND with GRAVEL; light brown,					7		
2	CL	$\left \right\rangle$	loose, moist (Fill) SANDY LEAN CLAY; dark brown, stiff, moist	1.5 - 3.0		112.3	15.5	1	9	
- 3 - 4 -	CL		SANDY LEAN CLAY; dark brown, sun, moist					4		12
5 - 6 -			medium stiff	5.0 - 6.5					3	3
7 -	ML		SANDY SILT; light brown, medium stiff, moist							
8 -			(Alluvium)	8.5 - 10.0				1	2	
9 - 10				0.0 10.0					2	3
- 11 - 12 -			TD: 10.0' No subsurface water encountered Backfilled with cuttings and tamped AC Patch							
13 - 14 -										
15 -										
16 -										
17										
18										
- 19										
- 20										
-										
21 -										
22										
- 23										
- 24										
-										
25 -										

LOGGED BY: S. Hemmer DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Boring No. 43 PAGE 1 OF 1 JOB NO.: 302524-002 DATE: 10/8/19

	<i>w</i>		OXNARD AIRPORT	SAMPLE DATA						
DEPTH (feet)	USCS CLASS	SYMBOL	TAXIWAY F IMPROVEMENTS 2889 West 5th Street Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.		
	5		SOIL DESCRIPTION	LNI LN	S, L	DRY	MO	B H		
-			5.5" AC / 5.0" SILTY SAND with GRAVEL (Misc. AB)					4		
1 C	CL		SANDY LEAN CLAY; dark brown, stiff, moist	1.0 - 2.5		115.9	15.1	9 17		
4	-+	$\overline{\}$	 soft					1		
5 C - C	CL		SANDY LEAN CLAY; brown, medium stiff, moist (Alluvium)	5.0 - 6.5	•			2 2		
- 8 - 9 – -			very soft	8.5 - 10.0	•			0 1 1		
10 - - 11 - 12 - 13			TD: 10.0' No subsurface water encountered Backfilled with cuttings and tamped AC Patch							
- 14 - 15 -										
16 - 17										
- 18 -										
19 -										
20 - 21										
- 22										
- 23										
- 24										
- 25										
- 26 -										

LEGEND:

Earth Systems Pacific

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem DATE: 10/8/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 4.0" AC / 6.5" SILTY SAND with GRAVEL (Misc. AB) 1 SW WELL GRADED SAND with GRAVEL; light brown, 10 loose, moist (Fill) 2 1.5 - 3.0 120.7 6.9 13 SANDY LEAN CLAY; dark brown, very stiff, moist CL 17 _ 3 _ 4 1 5 5.0 - 6.5 2 CL SANDY LEAN CLAY; brown, soft, moist (Alluvium) 2 _ 6 7 _ 8 0 8.5 - 10.0 _ 1 9 3 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 _ 20 21 22 23 24 25 26

■ Ring Sample Grab Sample Shelby Tube Sample SPT

NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 44 PAGE 1 OF 1 JOB NO.: 302524-002

\mathbb{E}^{2}	
	/

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/8/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) SYMBOL DEPTH (feet) MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 4.0" AC / 5.5" SILTY SAND with GRAVEL (Misc. AB) 4 _ 1 1.0 - 2.5 106.3 18.6 7 SANDY LEAN CLAY; dark brown, stiff, moist (Fill) CL 9 2 1.0 - 5.0 3 ()_ 4 soft 1 5 5.0 - 6.5 1 ML SANDY SILT; light brown, soft, moist (Alluvium) _ 3 6 7 _ 8 0 8.5 - 10.0 2 _ 9 2 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 _ 20 21 22 23 24 25 26

LEGEND: Ring Sample () Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 45

Earth Systems Pacific

LOGGED BY: S. Hemmer

AUGER TYPE: 6" Hollow Stem

Boring No. 46 PAGE 1 OF 1 DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 DATE: 10/8/19 **OXNARD AIRPORT** SAMPLE DATA **TAXIWAY F IMPROVEMENTS** DENSITY (pcf) ISTURE (%) ERVAL feet) 2889 West 5th Street .MPLE .YPE -OWS R 6 IN. **Oxnard**, California

(feet)	USCS CLASS	SYMBOL	TAXIWAY F IMPROVEMENTS 2889 West 5th Street Oxnard, California SOIL DESCRIPTION	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
-;	SW SM CL		4.0" AC / 6.0" SILTY SAND with GRAVEL (Misc. AB) WELL GRADED SAND with SILT and GRAVEL; light brown, loose, moist (Fill) SANDY LEAN CLAY; dark brown, very stiff, moist	1.0 - 2.5 1.0 - 2.0	0	117.1	3.7	12 16 1
_	CL		SANDY LEAN CLAY; brown, soft, moist (Alluvium)	5.0 - 6.5	•			2 2
			some oxidation	8.5 - 10.0	•			1 2
			TD: 10.0' No subsurface water encountered Backfilled with cuttings and tamped AC Patch					
			Ring Sample 🔿 Grab Sample 🖂 Shelby Tube Sample	SPT				

LOGGED BY: S. Hemmer DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem Boring No. 47 PAGE 1 OF 1 JOB NO.: 302524-002 DATE: 10/8/19

	(0		OXNARD AIRPORT		SAI			
DEPTH (feet)	USCS CLASS	SYMBOL	TAXIWAY F IMPROVEMENTS 2889 West 5th Street Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ŝ		SOIL DESCRIPTION	N	l's	DRY	MO	ШШ
- 0			4.0" AC / 7.0" SILTY SAND with GRAVEL (Misc. AB)					8
1 - 2	SW -SM		WELL GRADED SAND with SILT and GRAVEL; light brown, loose, moist (Fill)	1.0 - 2.5		116.4	13.1	14 22
- 3 - 4 -	CL		SANDY LEAN CLAY; dark brown, very stiff, moist					1
5 - 6 - 7 -	ML		SANDY SILT; light brown, medium stiff, moist (Alluvium)	5.0 - 6.5				2 3
8 - 9				8.5 - 10.0	\bullet			0 1 3
- 10			yellow brown to olive brown, soft					5
-			TD: 10.0' No subsurface water encountered					
-			Backfilled with cuttings and tamped					
12			AC Patch					
13								
14								
15								
- 16								
- 17								
- 18								
- 19								
-								
20								
21								
22								
23								
- 24								
- 25								
- 26								
-								

DRILL RIG: Mobile B-53 with Automatic Hammer

LOGGED BY: S. Hemmer

Boring No. 48 PAGE 1 OF 1 JOB NO.: 302524-002

			RIG: Mobile B-53 with Automatic Hammer				B NO.: DA	TE:		
	S		OXNARD AIRPORT TAXIWAY F IMPROVEMENTS		SAI	MPLE D	DATA			
DEPTH (feet)	USCS CLASS	SYMBOL	2889 West 5th Street Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)		BLOWS PER 6 IN	
	ñ		SOIL DESCRIPTION	N L	้เรื	DRY	MO	Ċ	Ξü	
— 0 — -			5.0" AC / 3.5" SILTY SAND with GRAVEL (Misc. AB)					4		
1 -	SW -SM		WELL GRADED SAND with SILT and GRAVEL; light brown, loose, moist (Fill)	1.0 - 2.5		114.8	12.1		8	8
2 - 3	CL		SANDY LEAN CLAY; dark brown, loose, moist							
-		$\left\{ \right\}$								
- 5 - 6	CL		SANDY LEAN CLAY; brown, medium stiff, moist, caliche (Alluvium)	5.0 - 6.5	•			2	4	5
7		\mathbb{N}								
- 8	ML		SANDY SILT; light brown, soft	0 5 40 0				2		
- 9 -				8.5 - 10.0					1	2
10 -			TD: 10.0'							
11 - 12			No subsurface water encountered Backfilled with cuttings and tamped AC Patch							
- 13 -										
14 - 15										
- 16 -										
17 - 18										
- 19										
- 20										
- 21 -										
22 -										
23 -										
24 -										
25 -										
26 -										

DEPTH (feet)

0

_ 1

2

3 _ 4

5

_

6 7 _

8

-9

10

11

12

13

14 15

16 17

18

23

24

25 26

Earth Systems Pacific

LOGGED BY: S. Hemmer DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 5.5" AC / 5.5" SILTY SAND with GRAVEL (Misc. AB) 3 SANDY LEAN CLAY; dark brown, stiff, moist (Fill) 1.0 - 2.5 114.7 12.9 6 CL 8 1 5.0 - 6.5 3 SANDY LEAN CLAY; brown, medium stiff, moist CL 3 (Alluvium) SILT; light brown, medium stiff, moist ML 1 8.5 - 10.0 2 3 TD: 10.0' No subsurface water encountered Backfilled with cuttings and tamped AC Patch

LEGEND: Ring Sample () Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 49 PAGE 1 OF 1

DATE: 10/9/19

|--|

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/9/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 4.5" AC / 10.0" SILTY SAND with GRAVEL (Misc. AB) 6 _ 1 SANDY LEAN CLAY; dark brown, very stiff, moist 1.0 - 2.5 119.0 13.0 16 CL 17 (Fill) 2 3 _ 4 soft 1 5 5.0 - 6.5 0 ML SANDY SILT; light brown, very soft, moist, caliche _ 1 (Alluvium) 6 7 _ 8 1 yellow brown, soft 8.5 - 10.0 _ 1 9 2 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Boring No. 50

PAGE 1 OF 1

LOGGED BY: S. Hemmer

	DR	ILL F	DBY: S. Hemmer RIG: Mobile B-53 with Automatic Hammer TYPE: 6" Hollow Stem			JO	B NO.:	AGE 1 OF 1 302524-002 ATE: 10/9/19
	(0		OXNARD AIRPORT		SAMPLE DATA			
DEPTH (feet)	USCS CLASS	SYMBOL	TAXIWAY F IMPROVEMENTS 2889 West 5th Street Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	ő		SOIL DESCRIPTION	N N	's	DRY	MO	BH
-			2.0" AC / 5.5" SILTY SAND with GRAVEL (Misc. AB)					4
1 - 2 - 3 -	CL		SANDY LEAN CLAY; dark brown, stiff, moist (Fill)	1.0 - 2.5		111.4	15.8	6 11
4 - 5 - 6 - 7 -	CL		SANDY LEAN CLAY; brown, soft, moist, caliche (Alluvium)	5.0 - 6.5	•			1 2 2
8 - 9 -	ML		SANDY SILT; yellow brown, medium stiff, moist	8.5 - 10.0	•			1 2 3
10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 21 - 22 - 24 - 25 - 26			TD: 10.0' No subsurface water encountered Backfilled with cuttings and tamped AC Patch					

Boring No. 51 PAGE 1 OF 1 DB NO.: 302524-002

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/9/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 4.5" AC / 6.0" SILTY SAND with GRAVEL (Misc. AB) _ 1 SW WELL GRADED SAND with GRAVEL; light brown, 9 1.5 - 3.0 114.6 11.6 14 loose, moist (Fill) 2 22 SC SANDY LEAN CLAY; dark brown, very stiff, moist _ 3 _ 4 1 5 5.0 - 6.5 2 CL SANDY LEAN CLAY; brown, medium stiff, moist, _ 4 caliche (Alluvium) 6 7 _ SANDY SILT; yellow brown, soft, moist ML 8 1 2 8.5 - 10.0 -9 1 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 20 21 22 23 24 25 26

LEGEND: Ring Sample Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 52 PAGE 1 OF 1 B NO.: 302524-002

<u> </u>	DF	RILL F	D BY: S. Hemmer RIG: Mobile B-53 with Automatic Hammer TYPE: 6" Hollow Stem			JO	B NO.:	AGE 302	E 1 (524	OF 1
	S				SA		DATA			
DEPTH (feet)	DEPTH (feet) USCS CLASS SYMBOL	TAXIWAY F IMPROVEMENTS One One	INTERVAL (feet) SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.				
o	ň		SOIL DESCRIPTION	N	'S	DRY	MO			-
-			3.5" AC / 5.0" SILTY SAND with GRAVEL (Misc. AB)					3		
1 - 2 - 3 -	CL		SANDY LEAN CLAY; dark brown, stiff, moist (Fill)	1.0 - 2.5		110.1	15.3		9	14
4 - 5 - 6 -	CL		SANDY LEAN CLAY; light brown, soft, moist, caliche (Alluvium)	5.0 - 6.5	•			1	1	3
7		\mathbb{N}		7.5 - 10.0	\bigcirc					
8		[8.5 - 10.0				2	2	
9		$\left[\right]$		0.0 10.0					2	2
10		\sum	TD: 10.0'							
- 11 - 12 - 13 - 14			No subsurface water encountered Backfilled with cuttings and tamped AC Patch							
- 15 -										
16										
17										
- 18										
- 19										
- 20										
- 21										
- 22										
- 23										
- 24										
-										
25										
26 -										

Boring No. 53

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/9/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 5.5" AC / 6.0" SILTY SAND with GRAVEL (Misc AB) _ 1 SW POORLY GRADED SAND with GRAVEL; light 8 1.5 - 3.0 124.3 5.2 11 brown, loose, moist (Fill) CL 2 15 SANDY LEAN CLAY; dark brown, stiff, moist 3 _ 4 4.0 - 5.0 ()CL SANDY LEAN CLAY; brown, medium stiff, moist, 0 _ (Alluvium) 5 5.0 - 6.5 2 _ 4 6 7 _ SANDY SILT; yellow brown, medium stiff, moist, ML 8 3 caliche 8.5 - 10.0 3 -9 3 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Boring No. 54 PAGE 1 OF 1 B NO.: 302524-002

LOGGED BY: S. Hemmer

Boring No. 55 PAGE 1 OF 1 JOB NO.: 302524-002

	DF	RILL F	D BY: S. Hemmer RIG: Mobile B-53 with Automatic Hammer TYPE: 6" Hollow Stem			JO	B NO.:	AGE 1 OF 1 302524-002 ATE: 10/9/19
	S		OXNARD AIRPORT		SAI		DATA	
DEPTH (feet)	USCS CLASS	SYMBOL	TAXIWAY F IMPROVEMENTS 2889 West 5th Street Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
o			SOIL DESCRIPTION	Z	S	DRY	Ŭ	
-			4.5" AC / 2.5" SILTY SAND with GRAVEL (Misc. AB)					
1			POORLY GRADED SAND with GRAVEL; light brown, loose, moist (Fill)	1.0 - 2.5		108.9	14.4	5 6
2	CL	$\left \right\rangle$	SANDY LEAN CLAY; dark brown, medium stiff,	1.0 2.0		100.0	17.7	8
- 3		[]	moist	1.5 - 5.0	\bigcirc			
-		\mathbb{N}		1.0 0.0				
4		\mathbb{N}						1
5	ML	\square	SANDY SILT; light brown, stiff, moist, caliche	5.0 - 6.5				3
6			(Alluvium)					6
-								
7								
8				0 5 40 0				1
9				8.5 - 10.0				3
-			medium stiff					
10			TD: 10.0'					
11			No subsurface water encountered					
12			Backfilled with cuttings and tamped AC Patch					
-								
13								
14								
15								
- 16								
-								
17								
18								
- 19								
-								
20								
21								
- 22								
-								
23								
24								
- 25								
-								
26								
	I		Ding Sampla Crab Sampla Chalby Tuba Sampla		1	1	1	<u> </u>

DRILL RIG: Mobile B-53 with Automatic Hammer

LOGGED BY: S. Hemmer

Boring No. 56 PAGE 1 OF 1 JOB NO.: 302524-002

	AL		R TYPE: 6" Hollow Stem					TE: 10/9/19		
	0		OXNARD AIRPORT	SAMPLE DATA						
DEPTH (feet)	USCS CLASS	SYMBOL	TAXIWAY F IMPROVEMENTS 2889 West 5th Street Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.		
	n N		SOIL DESCRIPTION	LNI LN	S_	DRYI	MOI	18 H		
-			4.5" AC / 5.0" SILTY SAND with GRAVEL (Misc. AB)							
1	SW		POORLY GRADED SAND with GRAVEL; light				10.0	7		
2	CL		brown, loose, moist (Fill)	1.5 - 3.0		116.0	12.0	7 7		
-		$\left \right\rangle$	SANDY LEAN CLAY; dark brown, medium stiff,					'		
3 - 4 -			moist					2		
5 - 6 -	ML		SANDY SILT; light brown, medium stiff, moist, (Alluvium)	5.0 - 6.5				2 5		
7 - 8 - 9				8.5 - 10.0	•			2 3 3		
- 10			light brown to gray brown, caliche					Ū		
-			TD: 10.0'							
11			No subsurface water encountered							
12			Backfilled with cuttings and tamped AC Patch							
-										
13										
14										
- 15										
-										
16										
17										
-										
18										
19										
- 20										
-										
21										
22										
-										
23										
24										
- 25										
-										
26										

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/10/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 3.5" AC / 9.0" SILTY SAND with GRAVEL (Misc. AB) _ 1 SW WELL GRADED SAND with GRAVEL; light brown, 8 1.0 - 2.5 117.6 2.7 9 loose, moist (Fill) 2 11 CL SANDY LEAN CLAY; dark brown, stiff, moist _ 3 _ 4 1 CL SANDY LEAN CLAY; brown, soft, moist, caliche 5 5.0 - 6.5 1 (Alluvium) 2 _ 6 7 _ 8 0 8.5 - 10.0 -1 9 light brown, very soft 1 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 _ 17 18 19 20 21 22 23 24 25 26

LEGEND: Ring Sample Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 57 PAGE 1 OF 1 3 NO.: 302524-002

USCS CLASS

CL

CL

ML

DEPTH (feet)

0

-1

2

_ 3 _ 4

5

_

6 7

_ 8

-

9

10

11

12

13

14 15

16 17

18

23

24

25 26

Earth Systems Pacific

LOGGED BY: S. Hemmer PAGE 1 OF 1 DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/10/19 **OXNARD AIRPORT** SAMPLE DATA **TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 6.0" AC / 7.0" SILTY SAND with GRAVEL (Misc. AB) SW WELL GRADED SAND with GRAVEL; light brown, 5 1.5 - 3.0 115.5 12.1 7 loose, moist (Fill) 11 SANDY LEAN CLAY; dark brown, stiff, moist 0 SANDY LEAN CLAY; brown, very soft, moist 5.0 - 6.5 1 (Alluvium) 1 SILT; light brown, soft, moist 0 8.5 - 10.0 1 2 TD: 10.0' No subsurface water encountered Backfilled with cuttings and tamped AC Patch

LEGEND: () Grab Sample Shelby Tube Sample SPT Ring Sample NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 58

LOGGED BY: S. Hemmer DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/10/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 5.0" AC / 6.0" SILTY SAND with GRAVEL (Misc. AB) -1 SW WELL GRADED SAND with GRAVEL; light brown, 5 1.5 - 3.0 110.8 13.7 11 loose, moist (Fill) CL 2 15 SANDY LEAN CLAY; dark brown, stiff, moist 3 _ 4 1 CL SANDY LEAN CLAY; brown, medium stiff, moist, 5 5.0 - 6.5 3 caliche (Alluvium) _ 3 6 7 _ 8 3 8.5 - 10.0 -4 SANDY SILT; light brown, slightly moist, medium ML 9 4 stiff 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 20 21 22 23 24 25 26

LEGEND: () Grab Sample Shelby Tube Sample SPT Ring Sample NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 59 PAGE 1 OF 1

LOGGED BY: S. Hemmer DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/10/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 4.5" AC / 6.5" SILTY SAND with GRAVEL (Misc. AB) -1 SW WELL GRADED SAND with GRAVEL; light brown, 14 7.1 1.0 - 2.5 119.8 16 loose, moist (Fill) CL 2 17 SANDY LEAN CLAY; dark brown, very stiff, moist 3 _ 4 1 SANDY SILT; light brown, soft, moist (Alluvium) ML 5 5.0 - 6.5 1 3 6 7 _ SANDY LEAN CLAY; brown, very soft, moist, CL 8 0 caliche 8.5 - 10.0 0 -9 2 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 20 21 22 23 24 25 26

LEGEND: () Grab Sample Shelby Tube Sample SPT Ring Sample NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 60 PAGE 1 OF 1

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/10/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 5.5" AC / 9.0" SILTY SAND with GRAVEL (Misc. AB) -1 4 WELL GRADED SAND with GRAVEL; light brown, SW 1.5 - 3.0 112.4 14.5 7 2 9 loose, moist (Fill) CL SANDY LEAN CLAY; dark brown, stiff, moist 3 _ 4 CL SANDY LEAN CLAY; brown, soft, moist 0 5 5.0 - 6.5 1 2 _ 6 7 8 1 8.5 - 10.0 _ 1 Caliche 9 3 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 20 21 22 23 24 25 26

LEGEND: Ring Sample Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 61 PAGE 1 OF 1 3 NO.: 302524-002

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem DATE: 10/10/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 4.5" AC / 9.0" SILTY SAND with GRAVEL (Misc. AB) 1 7 SW WELL GRADED SAND with GRAVEL; light brown, 1.5 - 3.0 90.7 12.2 7 loose, moist (Fill) 2 8 CL _ SANDY LEAN CLAY; dark brown, stiff, moist 3 2.0 - 5.0 ()_ 4 1 5 5.0 - 6.5 2 SC SILTY, CLAYEY SAND; dark brown, loose, moist 2 _ -SM (Alluvium) 6 7 _ 8 0 caliche 8.5 - 10.0 _ 1 9 2 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 20 21 22 23 24 25 26

LEGEND: Ring Sample Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 62 PAGE 1 OF 1 JOB NO.: 302524-002

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/10/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 3.5" AC / 7.0" SILTY SAND with GRAVEL (Misc. AB) -1 29 CL SANDY LEAN CLAY; dark brown, very stiff, 1.0 - 2.5 77.9 12.4 17 slightly moist (Fill) 2 14 3 _ 4 SC -SM SILTY, CLAYEY SAND; dark brown, loose, moist 1 (Alluvium) 5 5.0 - 6.5 3 4 _ 6 7 _ 8 0 8.5 - 10.0 _ 1 9 1 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Boring No. 63

PAGE 1 OF 1

DRILL RIG: Mobile B-53 with Automatic Hammer

LOGGED BY: S. Hemmer

Boring No. 64 PAGE 1 OF 1 JOB NO.: 302524-002

					~ ^ /			E: 10/10/ [·]
	ő		OXNARD AIRPORT TAXIWAY F IMPROVEMENTS		SAI	MPLE [
UEPTH (feet)	USCS CLASS	SYMBOL	2889 West 5th Street Oxnard, California	INTERVAL (feet)	SAMPLE TYPE	DRY DENSITY (pcf)	MOISTURE (%)	BLOWS PER 6 IN.
	n		SOIL DESCRIPTION	LNI LNI	SA	DRY I (MOI	BL
- 0			2.5" AC / 5.5" AC / 6.0" SILTY SAND with GRAVEL (Misc. AB)					
1 - 2	SW		WELL GRADED SAND with GRAVEL; light brown, loose, moist (Fill)	1.0 - 2.5		104.3	3.4	7 4 6
- 3 -	CL		SANDY LEAN CLAY; dark brown, medium stiff, moist					
4 - 5 - 6 -	SC -SM		SILTY, CLAYEY SAND; brown, loose, moist, caliche (Alluvium)	5.0 - 6.5	•			0 2 3
7 - 8 - 9			soft	8.5 - 10.0	•			0 1 2
10			TD: 10.0'	-				
- 11			No subsurface water encountered					
-			Backfilled with cuttings and tamped					
12			AC Patch					
13								
-								
14 -								
5								
-								
-								
7								
-								
-								
9								
- 20								
-								
21								
- 22								
-								
23								
- 24								
-								
25								
- 26								
-								

LOGGED BY: S. Hemmer PAGE 1 OF 1 DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/11/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 3.0" AC / 6.0" SILTY SAND with GRAVEL (Misc. AB) -1 SANDY LEAN CLAY; dark brown, medium stiff, 3 CL 1.0 - 2.5 102.3 19.0 4 moist (Fill) 2 5 3 _ 4 SILTY CLAYEY SAND; dark brown, loose, moist SC 0 -SM 🛸 🖻 (Alluvium) 5 5.0 - 6.5 1 1 6 7 _ 8 0 8.5 - 10.0 _ 1 9 2 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 _ 20 21 22 23 24 25 26

Boring No. 65

LOGGED BY: S. Hemmer PAGE 1 OF 1 DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/11/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 4.0" AC / 7.5" SILTY SAND with GRAVEL (Misc. AB) -1 WELL GRADED SAND with GRAVEL; light brown, 12 SW 1.0 - 2.5 115.4 14.8 12 loose, moist (Fill) CL 2 16 SANDY LEAN CLAY; dark brown, very stiff, moist 3 _ 4 4.0 - 5.0 ()SC -SM SILTY, CLAYEY SAND; dark brown, loose, moist, 1 caliche (Alluvium) 5 5.0 - 6.5 1 2 _ 6 7 _ 8 0 8.5 - 10.0 2 _ 9 2 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Boring No. 66

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/11/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 5.0" AC / 7.0" SILTY SAND with GRAVEL (Misc. AB) -1 5 SANDY LEAN CLAY; brown, loose, moist (Fill) CL 1.0 - 2.5 106.7 12.9 5 2 6 3 _ 4 SILTY, CLAYEY SAND; dark brown, loose, moist SC 1 -SM (Alluvium) 5 5.0 - 6.5 3 3 6 7 _ 2 8 8.5 - 10.0 3 _ 7 9 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Boring No. 67

PAGE 1 OF 1

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem DATE: 10/11/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) SYMBOL DEPTH (feet) MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 5.5" AC / 5.5" SILTY SAND with GRAVEL (Misc. AB) -1 12 SW WELL GRADED SAND with GRAVEL; light brown, 1.0 - 2.5 112.7 2.8 8 loose, moist (Fill) 2 7 CL _ SANDY LEAN CLAY; dark brown, stiff, moist 3 _ 4 SILTY CLAYEY SAND; dark brown, loose, moist SC 2 -SM (Alluvium) 5 5.0 - 6.5 3 4 _ 6 7 _ 2 8 8.5 - 10.0 3 _ brown, caliche 9 5 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 20 21 22 23 24 25 26

LEGEND: Ring Sample Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 68 PAGE 1 OF 1 JOB NO.: 302524-002

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer JOB NO.: 302524-002 AUGER TYPE: 6" Hollow Stem DATE: 10/11/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 3.5" AC / 7.0" SILTY SAND with GRAVEL (Misc. AB) -1 5 WELL GRADED SAND with GRAVEL; light brown, SW 1.0 - 2.5 126.1 14.2 8 loose, moist (Fill) CL 2 8 SANDY LEAN CLAY; dark brown, stiff, moist 3 _ 4 SILTY CLAYEY SAND; dark brown, loose, moist SC 1 -SM 🔊 (Alluvium) 5 5.0 - 6.5 2 2 _ 6 7 _ 8 1 8.5 - 10.0 3 _ 9 5 10 TD: 10.0' No subsurface groundwater encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 _ 20 21 22 23 24 25 26

Boring No. 69

PAGE 1 OF 1

LOGGED BY: S. Hemmer

DRILL RIG: Mobile B-53 with Automatic Hammer AUGER TYPE: 6" Hollow Stem DATE: 10/11/19 **OXNARD AIRPORT** SAMPLE DATA **USCS CLASS TAXIWAY F IMPROVEMENTS** DRY DENSITY (pcf) DEPTH (feet) SYMBOL MOISTURE (%) INTERVAL (feet) 2889 West 5th Street SAMPLE TYPE BLOWS PER 6 IN. **Oxnard**, California SOIL DESCRIPTION 0 5.0" AC / 6.5" SILTY SAND with GRAVEL (Misc. AB) _ 1 12 WELL GRADED SAND with GRAVEL; light brown, SW 1.0 - 2.5 118.0 13.2 13 loose, moist (Fill) CL 2 20 SANDY LEAN CLAY; dark brown, very stiff, moist 3 1.5 - 4.5 ()_ 4 2 SP POORLY GRADED SAND; light brown, loose, 5 5.0 - 6.5 2 moist (Alluvium) 1 6 SILTY, CLAYEY SAND; dark brown, loose, moist, SC -SM caliche 7 _ 8 0 8.5 - 10.0 _ 1 caliche 9 1 10 TD: 10.0' No subsurface water encountered 11 Backfilled with cuttings and tamped 12 AC Patch 13 14 15 16 17 18 19 _ 20 21 22 23 24 25 26

LEGEND: Ring Sample Grab Sample Shelby Tube Sample SPT NOTE: This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Boring No. 70 PAGE 1 OF 1 JOB NO.: 302524-002

INTENTIONALLY BLANK

APPENDIX B

Laboratory Test Results

BULK DENSITY TEST RESULTS

ASTM D 2937-17 (modified for ring liners)

BORING DEPTH WET MOISTURE DRY NO. CONTENT, % feet DENSITY, pcf DENSITY, pcf 41 1.0 - 1.5 16.9 126.1 107.9 42 1.5 - 2.0 15.5 129.7 112.3 43 1.0 - 1.5 15.1 133.4 115.9 44 1.5 - 2.0 6.9 129.0 120.7 45 1.0 - 1.5 126.0 106.3 18.6 46 1.0 - 1.5 3.7 117.1 121.4 47 1.0 - 1.5 131.7 116.4 13.1 48 1.0 - 1.5 12.1 128.7 114.8 49 1.0 - 1.5 12.9 129.5 114.7 50 1.0 - 1.5 13.0 134.5 119.0 1.0 - 1.5 111.4 51 15.8 128.9 52 1.5 - 2.0 11.6 127.9 114.6 53 1.0 - 1.5 126.9 110.1 15.3 1.5 - 2.0 5.2 130.8 124.3 54 55 1.0 - 1.5 14.4 124.6 108.9 1.5 - 2.0 12.0 129.9 116.0 56 57 1.0 - 1.5 2.7 117.6 120.8 58 1.5 - 2.0 12.1 129.6 115.5 59 1.5 - 2.0 13.7 125.9 110.8 60 1.0 - 1.5 7.1 128.3 119.8 112.4 61 1.5 - 2.0 14.5 128.7 62 1.5 - 2.0 12.2 101.7 90.7 63 1.0 - 1.5 12.4 87.6 77.9 64 1.0 - 1.5 3.4 107.8 104.3 65 1.0 - 1.5 19.0 121.8 102.3 66 1.0 - 1.5 14.8 132.4 115.4 106.7 67 1.0 - 1.5 12.9 120.5 68 1.0 - 1.5 2.8 112.7 115.9 69 1.0 - 1.5 14.2 144.0 126.1 70 1.0 - 1.5 13.2 133.6 118.0

302524-002

February 11, 2020

PARTICLE SIZE ANALYSIS

Boring #41 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL) LL = 28; PL = 17; PI = 11

10

February 11, 2020 Specific Gravity = 2.70 (assumed) Gravel = 2%; Sand = 43%; Silt = 32%; Clay = 23%

Sieve size			% Reta	ined				% Passing			
L" (25.0-mm)				0					100		
3/4" (19.0-mm				0					100		
L/2" (12.5-mm				0					100		
8/8" (9.5-mm)				1				99			
‡4 (4.75-mm)			2					98			
‡8 (2.36-mm)			3					97			
‡16 (1.18-mm)			5						95		
[‡] 30 (600-μm)				7					93		
50 (300-µm)				12					88		
100 (150-μm)				28					72		
200 (75-μm)			45					55			
lydrometer	Analysis										
l6-μm									46		
3-µm									41		
1-μm									34		
.3-μm									29		
)-μm									24		
.2-μm									23		
.2-μm									19		
Colloids									16		
U. S.	STANDARD SIEVE OPEN	NNG, in.	U. S. S	TANDARD SIE	E NUMBE	RS		HYDRO	OMETER ANALYSIS		
	1 0.75 0.50.375	4	8	16 30	50	100	200				
100		 	•	•		•					
90											
80											
70											
60											
50											
40											
30											
20											

1

GRAIN SIZE, mm

0.1

0.01

0.001

302524-002

PARTICLE SIZE ANALYSIS

Boring #45 @ 1.0 - 5.0' Dark Brown Sandy Lean Clay (CL) LL = 29; PL = 19; PI = 10

> 20 10 0

100

10

February 11, 2020 Specific Gravity = 2.70 (assumed) Gravel = 1%; Sand = 47%; Silt = 31%; Clay = 21%

Sieve size		% Retai	ned	% Passing			
1" (25.0-mm)		0		100			
3/4" (19.0-mm)	0		100			
1/2" (12.5-mm)	0		100			
3/8" (9.5-mm)		0		100			
#4 (4.75-mm)		1		99			
#8 (2.36-mm)		3		97			
#16 (1.18-mm)		5		95			
#30 (600-μm)		7		93			
#50 (300-μm)		14		86			
#100 (150-μm)		30		70			
#200 (75-μm)		48		52			
Hydrometei	Analysis						
48-µm				35			
34-µm				31			
22-µm				28			
L3-µm				26			
θ-μm				23			
5.2-μm				21			
3.1-µm				19			
Colloids				13			
U. S.	STANDARD SIEVE OPENING, in.	U. S. STANDARD SIEVE	NUMBERS	HYDROMETER ANALYSIS			
400	1 0.75 0.50.375 4	8 16 30	50 100 20	0			
100		••••					
90							
80							
70							
60							
50							
40							
30							
20							

1

GRAIN SIZE, mm

0.1

0.01

0.001

302524-002

PARTICLE SIZE ANALYSIS

30 20 10

0

100

10

Boring #46 @ 1.0 - 2.0' Light Brown Well-Graded Sand with Silt and Gravel (SW-SM) PI = NP (Non-plastic)

February 11, 2020 Specific Gravity = 2.65 (assumed) Gravel = 22%; Sand = 68%; Silt = 6%; Clay = 4% Cu = 27.3; Cc = 1.7

C

0.001

0.01

0.1

Sieve size			% Retai	ned		% Passing			
1" (25.0-mm)			0			100	_		
3/4" (19.0-mm			5			95			
1/2" (12.5-mm	ı)		10			90			
3/8" (9.5-mm)			13			87			
#4 (4.75-mm)			22			78			
#8 (2.36-mm)			31			69			
#16 (1.18-mm			42			58			
#30 (600-μm)			56			44			
#50 (300-μm)			73			27			
#100 (150-μm)		84			16			
#200 (75-μm)			90			10			
Hydromete	r Analysis						_		
50-µm						10			
36-µm						8			
23-µm						7			
13-µm						7			
9-μm						6			
5.5-μm						4			
3.3-µm						4			
Colloids						3			
U. S.	STANDARD SIEVE OPENING	i, in. U. S.	STANDARD SIEVE	NUMBERS		HYDROMETER ANALYSIS			
100	1 0.75 0.50.375	4 8	16 30	50 10	0 200				
100			•						
90									
80 و									
70									
60									
70									
40									
30									
20				$+ \mathbb{N}$					

1

GRAIN SIZE, mm

302524-002

PARTICLE SIZE ANALYSIS

Boring #53 @ 7.5 - 10.0' Light Brown Sandy Lean Clay (CL) LL = 36; PL = 19; PI = 17 February 11, 2020 Specific Gravity = 2.70 (assumed) Gravel = 0%; Sand = 26%; Silt = 45%; Clay = 29%

Sieve size			% Re	tained			% Passing	
1" (25.0-mm)				0			100	
3/4" (19.0-mm)				0			100	
1/2" (12.5-mm)				0			100	
3/8" (9.5-mm)				0			100	
#4 (4.75-mm)				0			100	
#8 (2.36-mm)				0			100	
#16 (1.18-mm)				1			99	
#30 (600-μm)				2			98	
#50 (300-μm)				3			97	
#100 (150-μm)				9			91	
#200 (75-μm)				26			74	
Hydrometer <i>J</i>	Analysis							
45-μm						-	55	-
32-μm							50	
21-μm							46	
12-μm							38	
9-μm							35	
5.1-µm							29	
5.1-μm 3.1-μm							29 27	
5.1-μm 3.1-μm Colloids								
3.1-μm Colloids	ANDARD SIEVE OPENIN	G, in. U	J. S. STANDARD S	SIEVE NUMBERS	6		27	
3.1-µm Colloids u.s.st	'ANDARD SIEVE OPENIN 1 0.75 0.50.375	G, in. U 4 8		SIEVE NUMBERS	5 100	200	27 22	
3.1-μm Colloids ^{U. S. ST}						200	27 22	
3.1-μm Colloids ^{U.S.ST} 90						200	27 22	
3.1-μm Colloids ^{U. S. ST}						200	27 22	
3.1-μm Colloids υ. s. sτ 100 90						200	27 22	
3.1-μm Colloids υ. s. sτ 100 90 80							27 22	
3.1-μm Colloids ^{0. s. st}						200	27 22	
3.1-μm Colloids ^{U.S.ST} ¹⁰⁰ 90 80 70 60 50							27 22	
3.1-μm Colloids ^{U.S.ST} 100 90 80 70 60 50 40							27 22	
3.1-μm Colloids U.S.ST							27 22	
3.1-μm Colloids u.s.st							27 22	
3.1-μm Colloids U.S.ST							27 22	

GRAIN SIZE, mm

302524-002

PARTICLE SIZE ANALYSIS

Boring #54 @ 4.0 - 5.0' Dark Brown Sandy Lean Clay (CL) LL = 39; PL = 18; PI = 21

10

February 11, 2020 Specific Gravity = 2.70 (assumed) Gravel = 1%; Sand = 21%; Silt = 39%; Clay = 39%

	i eve size " (25.0-mm)					% I	Retai	ned					%	Pas	sin	g	
1" ((25.0-mm)						0				-			10	0		
	" (19.0-mm)						0							10	0		
-	" (12.5-mm)						0							10			
	5" (9.5-mm)						1				99						
	(4.75-mm)						1			99							
	(2.36-mm)				1					99							
	5 (1.18-mm)				1									99			
) (600-µm)				2									98			
) (300-µm)						3							97			
	#100 (150-μm) #200 (75-μm)						10							90			
#20)0 (75-μm)			22							78	8					
Ηу	drometer	Analy	sis														
40-	μm													67	7		
29-	μm													62	2		
19-	μm													55	;		
11-	μm													47	7		
8-μ	.m													43	5		
	-μm													39)		
3.0-	-μm													34	ŀ		
Coll	loids													21	-		
	U. S. S	TANDARD S	SIEVE OPE	NING, in.	U. :	S. STANDA	RD SIEVE	NUMBE	RS			HYDF	ROMETE	ER ANA	LYSIS		
		1 0.75	0.50.375	4	8	16	30	50	100	200							
	00				•	•	+	<u>ا</u>	\checkmark			ſ	•				
	90																
	80																
	70																
	60																
	50																
.	40													•	•		
	30															•	
(20																\rightarrow

1

GRAIN SIZE, mm

0.1

0.01

0.001

302524-002

PARTICLE SIZE ANALYSIS

Boring #55 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL) LL = 30; PL = 19; PI = 11

February 11, 2020 Specific Gravity = 2.70 (assumed) Gravel = 1%; Sand = 45%; Silt = 31%; Clay = 23%

Sieve size			% Ret	ained			% Passing	
1" (25.0-mm)			()		_	100	_
3/4" (19.0-mm)			()			100	
1/2" (12.5-mm)			()			100	
3/8" (9.5-mm)			()			100	
#4 (4.75-mm)			-	1			99	
#8 (2.36-mm)			-	1			99	
#16 (1.18-mm)				1			96	
#30 (600-μm)			6				94	
#50 (300-μm)				2			88	
#100 (150-μm)				8			72	
#200 (75-μm)			4	6			54	
Hydrometer A	Analysis							
47-µm						_	44	_
34-µm							39	
21-µm							36	
13-µm							31	
9-μm							27	
5.2-μm							23	
3.1-μm							21	
Colloids							17	
U. S. STA	NDARD SIEVE OPENIN	IG, in. U	. S. STANDARD SI	EVE NUMBERS	6		HYDROMETER ANALYSIS	
	1 0.75 0.50.375	4 8	16 30	50	100	200		
100					•			
100 90					•			
	••••		•		•			
90					•			
90					•			
90 80 70 60					•			
90 80 70 60 50					•			
90 80 70 60 50 40					•			
90 80 70 60 50 40 30					•			
90 80 70 60 50 40 30 20					•			
90 80 70 60 50 40 30					•			

GRAIN SIZE, mm

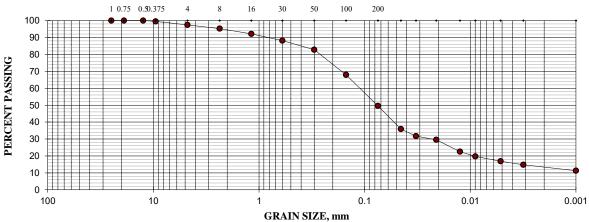
302524-002

PARTICLE SIZE ANALYSIS

Boring #62 @ 2.0 - 5.0' Dark Brown Sandy Lean Clay (CL) LL = 27; PL = 18; PI = 9 February 11, 2020 Specific Gravity = 2.70 (assumed) Gravel = 1%; Sand = 45%; Silt = 30%; Clay = 24%

Sieve size			% Re	tained		% Passing	
1" (25.0-mm)				0		100	-
3/4" (19.0-mm)				0		100	
1/2" (12.5-mm)				0		100	
3/8" (9.5-mm)				0		100	
#4 (4.75-mm)				1		99	
#8 (2.36-mm)				2		98	
#16 (1.18-mm)				5		95	
#30 (600-μm)				7		93	
#50 (300-μm)				15		85	
#100 (150-μm)				30		70	
#200 (75-μm)			Z	46		54	
Hydrometer	Analysis						
- 45-μm	-					47	
32-µm						45	
21-µm						38	
12-µm						32	
9-μm						27	
5.1-μm						24	
3.1-µm						21	
Colloids						18	
U. S. S	TANDARD SIEVE OPEN	ING, in.	U. S. STANDARD S	IEVE NUMBERS	3	HYDROMETER ANALYSIS	
	1 0.75 0.50.375	4 8	16 30	0 50	100 200		
100							
90							
80							
70							
60							
50					P		
40							
30							
					·····		
20				·			

GRAIN SIZE, mm


302524-002

PARTICLE SIZE ANALYSIS

Boring #66 @ 4.0 - 5.0' **Dark Brown Silty, Clayey Sand (SC-SM)** LL = 27; PL = 21; PI = 6 February 11, 2020 Specific Gravity = 2.70 (assumed) Gravel = 3%; Sand = 47%; Silt = 33%; Clay = 17%

Sieve size			% I	Retai	ned			% Passing
1" (25.0-mm)				0			•	100
3/4" (19.0-mm)				0				100
1/2" (12.5-mm)				0				100
3/8" (9.5-mm)				1				99
#4 (4.75-mm)				3				97
#8 (2.36-mm)				5				95
#16 (1.18-mm)				8				92
#30 (600-μm)				12				88
#50 (300-μm)				17				83
#100 (150-μm)				32				68
#200 (75-μm)				50				50
Hydrometer Analysis								
45-μm							•	36
33-μm								32
21-μm								30
13-µm								23
9-μm								20
5.2-μm								17
3.1-µm								15
Colloids								11
U. S. STANDARD SIEVE OPE	NING, in.	U. \$	S. STANDA	RD SIEVE	NUMBER	S		HYDROMETER ANALYSIS
1 0.75 0.50.375	4	8	16	30	50	100	200	
100	.	- i	•			•		

302524-002

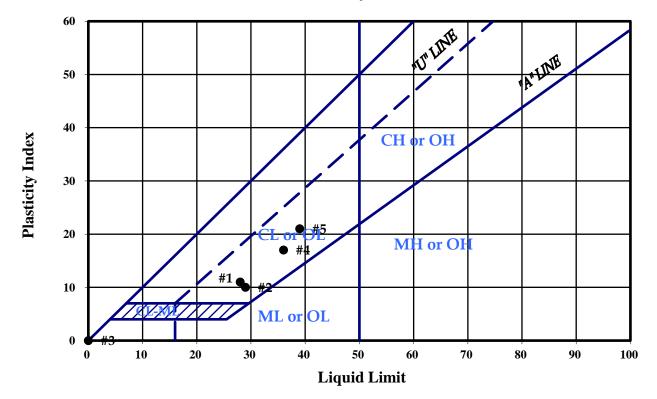
PARTICLE SIZE ANALYSIS

Boring #70 @ 1.5 - 4.5' Dark Brown Sandy Lean Clay (CL) LL = 28; PL = 20; PI = 8 February 11, 2020 Specific Gravity = 2.70 (assumed) Gravel = 1%; Sand = 47%; Silt = 31%; Clay = 21%

				% Reta	ined		% Passing	
1" (25.0-mm)				0			100	
3/4" (19.0-mr				0			100	
1/2" (12.5-mr				0			100	
3/8" (9.5-mm				0			100	
#4 (4.75-mm)				1			99	
#8 (2.36-mm)				4			96	
#16 (1.18-mm				7			93	
#30 (600-μm)				10			90	
#50 (300-μm)				13			87	
#100 (150-μn				28			72	
#200 (75-μm)				48			52	
Hydromete	er Analys	sis						
45-µm							43	
33-µm							36	
21-µm							32	
13-µm							25	
9-µm							23 21	
3.1-µm							19	
3.1-µm								
3.1-μm Colloids	S. STANDARD SI	EVE OPENING, in	. U.	S. STANDARD SIE	E NUMBERS		19	
3.1-μm Colloids u.:		EVE OPENING, in 0.30.375 4	. U. 8	S. STANDARD SIEV 16 30		00 200	19 15	
3.1-μm Colloids ^{U.1}						00 200	19 15	
3.1-μm Colloids υ.: 100 90						00 200	19 15	
3.1-μm Colloids						00 200	19 15	
3.1-μm Colloids						00 200	19 15	
3.1-μm Colloids						00 200	19 15	
3.1-μm Colloids						00 200	19 15	
3.1-μm Colloids							19 15	
100							19 15	
3.1-μm Colloids						00 200	19 15	
3.1-μm Colloids							19 15	
3.1-μm Colloids 100 90 80 70 60 50 40 30 20						00 200	19 15	0.00

GRAIN SIZE, mm

302524-002


PLASTICITY INDEX

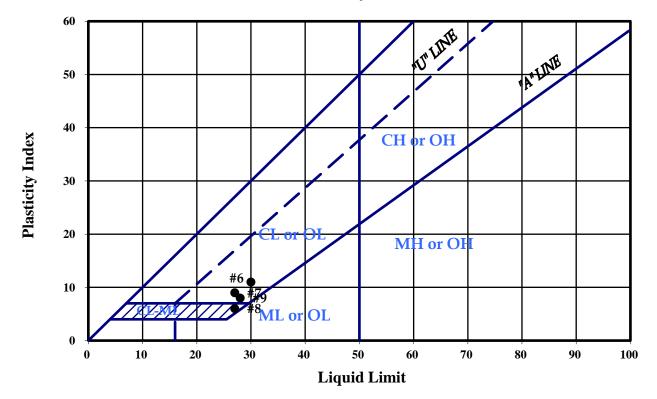
ASTM D 4318-17

February 11, 2020

Test No.:	1	2	3	4	5
Boring No.:	41	45	46	53	54
Sample Depth:	1.5 - 5.0'	1.0 - 5.0'	1.0 - 2.0'	7.5 - 10.0'	4.0 - 5.0'
Liquid Limit:	28	29	NL	36	39
Plastic Limit:	17	19	NP	19	18
Plasticity Index:	11	10	NP	17	21

Plasticity Chart

302524-002

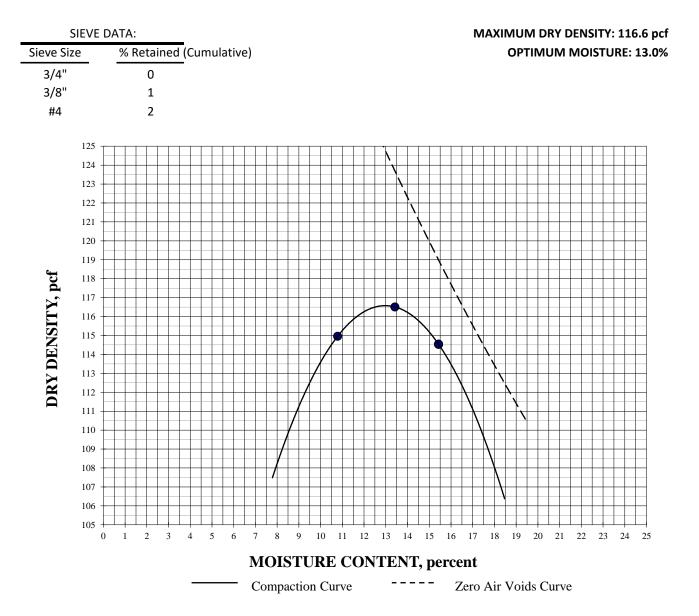

PLASTICITY INDEX

ASTM D 4318-17

February 11, 2020

Test No.:	6	7	8	9	10
Boring No.:	55	62	66	70	
Sample Depth:	1.5 - 5.0'	2.0 - 5.0'	4.0 - 5.0'	1.5 - 4.0'	
Liquid Limit:	30	27	27	28	
Plastic Limit:	19	18	21	20	
Plasticity Index:	11	9	6	8	

Plasticity Chart



302524-002

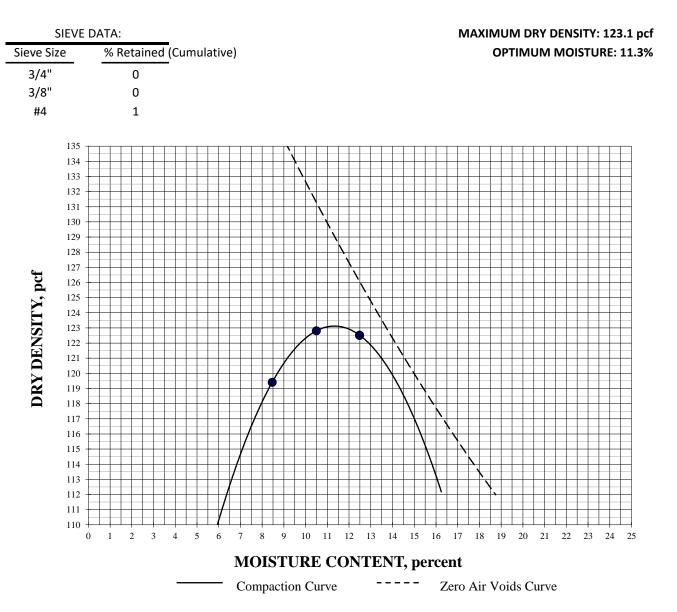
MOISTURE-DENSITY COMPACTION TEST with 5% Lime, B.D.W.

PROCEDURE USED: A PREPARATION METHOD: Moist

RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-002

ASTM D 1557-12 (Modified)


February 11, 2020 Boring #41 @ 1.5 - 5.0'

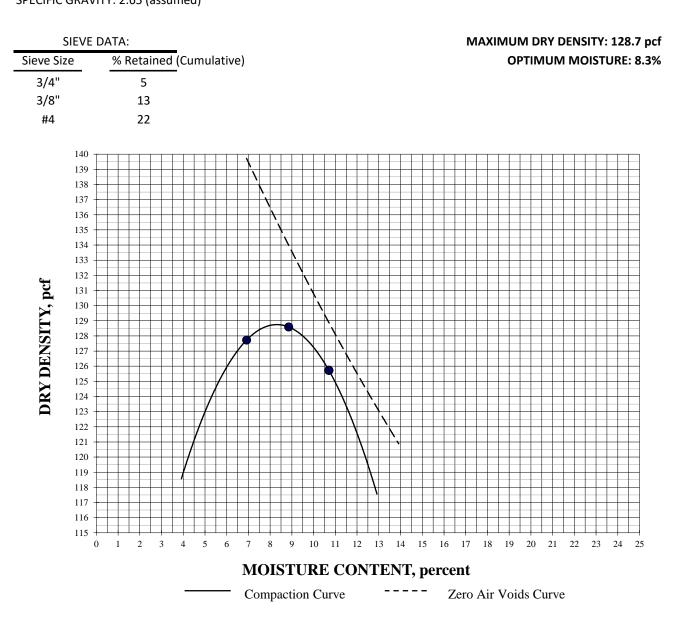
Boring #41 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL) With 5% Lime by Dry Weight

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-002

ASTM D 1557-12 (Modified)

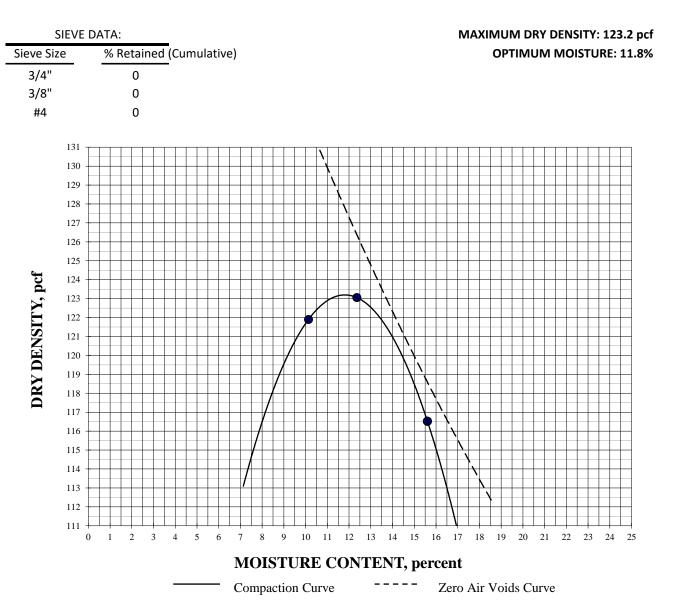

February 11, 2020 Boring #45 @ 1.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: B PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.65 (assumed)

Boring #46 @ 1.0 - 2.0' Light Brown Well-Graded Sand with Silt and Gravel (SW-SM)

302524-002

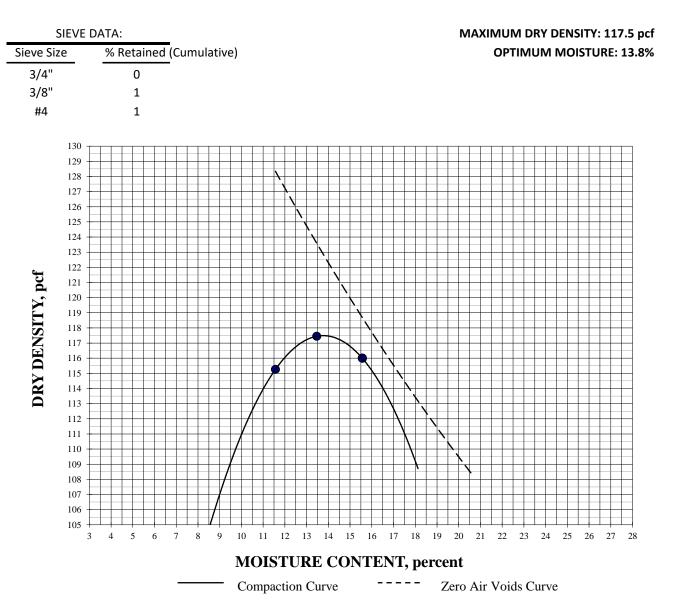

ASTM D 1557-12 (Modified)

February 11, 2020

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-002

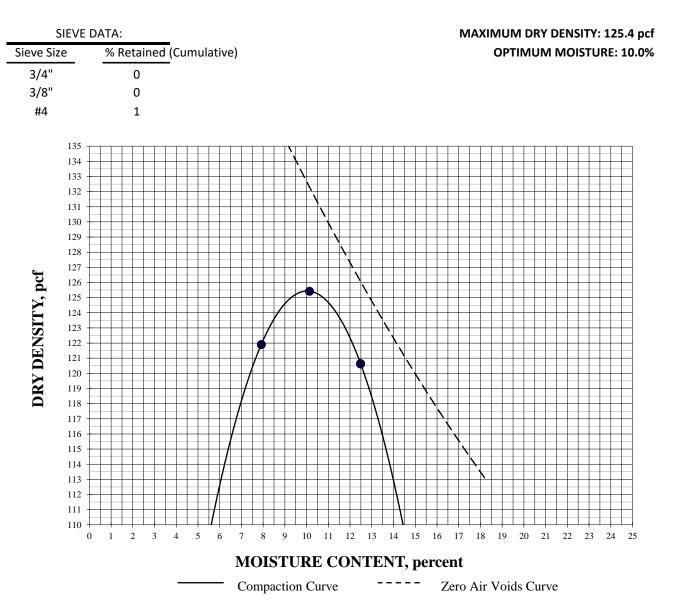

ASTM D 1557-12 (Modified)

February 11, 2020 Boring #53 @ 7.5 - 10.0' Light Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-002

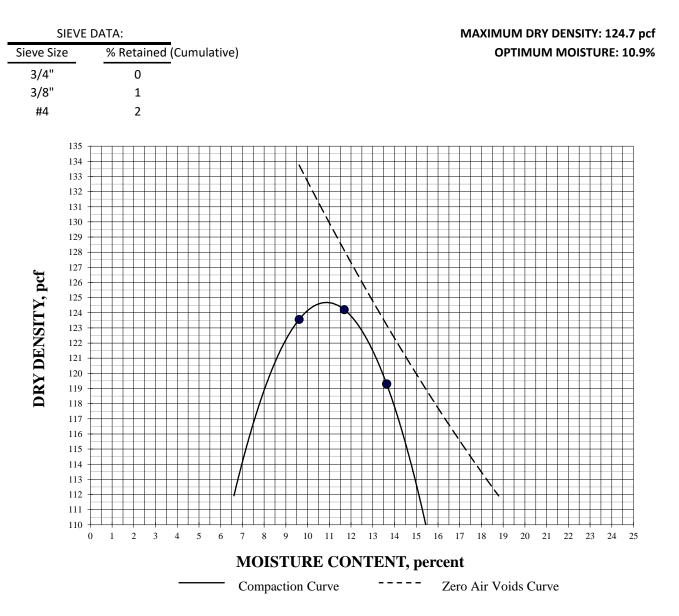

ASTM D 1557-12 (Modified)

February 11, 2020 Boring #54 @ 4.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-002


ASTM D 1557-12 (Modified)

February 11, 2020 Boring #55 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

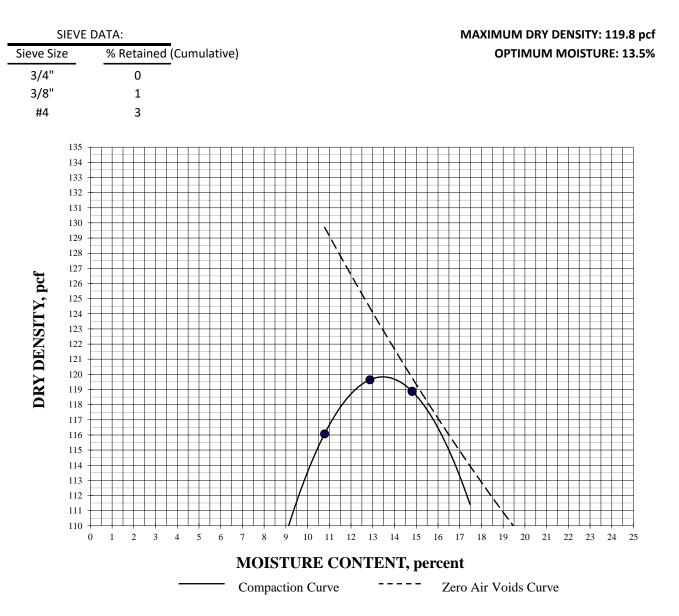
MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-002

ASTM D 1557-12 (Modified)

Boring #62 @ 2.0 - 5.0'

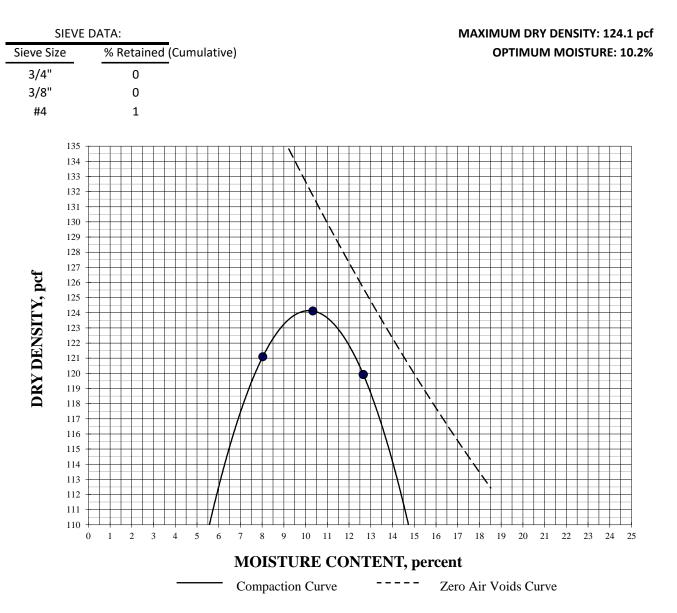

Dark Brown Sandy Lean Clay (CL)

February 11, 2020

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.68 (assumed)

302524-002


ASTM D 1557-12 (Modified)

February 11, 2020 Boring #66 @ 4.0 - 5.0' Dark Brown Silty, Clayey Sand (SC-SM)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-002

ASTM D 1557-12 (Modified)

February 11, 2020 Boring #70 @ 1.5 - 4.5' Dark Brown Sandy Lean Clay (CL)

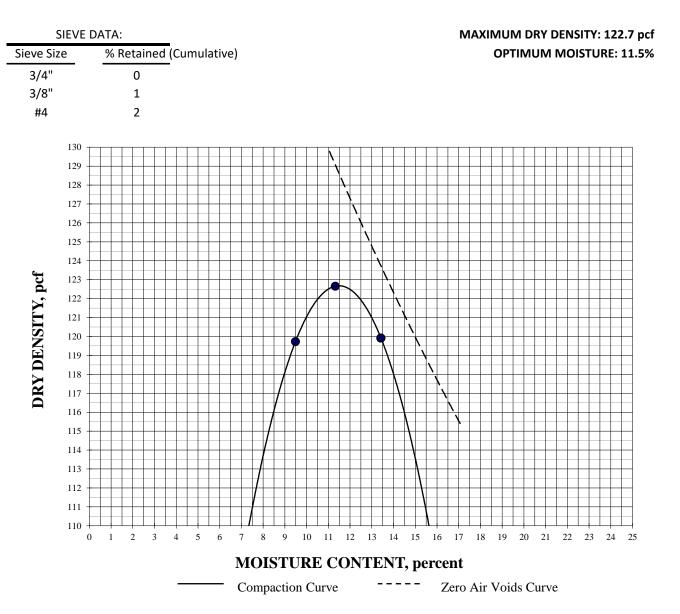
CALIFORNIA BEARING RATIO

Boring #41 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	101.9	106.5	111.6
Moisture content, %, before soak	8.5	11.5	14.5
Moisture content, %, after soak, avg.	21.5	18.4	15.6
Moisture content, %, after soak, top 1"	22.1	21.5	18.2
Expansion, %, 96 hour soak	0.0	0.0	0.0
Bearing Ratio, 0.100" penetration	2.7	5.1	7.0

25 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak	110.0	110.5	116.1	
Moisture content, %, before soak	8.5	11.5	14.5	
Moisture content, %, after soak, avg.	19.1	15.9	16.3	
Moisture content, %, after soak, top 1"	20.3	21.0	16.8	
Expansion, %, 96 hour soak	0.0	0.2	0.0	
Bearing Ratio, 0.100" penetration	5.1	6.6	10.1	

75 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	119.9	121.4	118.3
Moisture content, %, before soak	8.5	11.5	14.5
Moisture content, %, after soak, avg.	15.7	15.0	16.4
Moisture content, %, after soak, top 1"	20.0	17.8	16.5
Expansion, %, 96 hour soak	0.2	0.5	0.0
Bearing Ratio, 0.100" penetration	10.3	20.3	10.4


302524-002

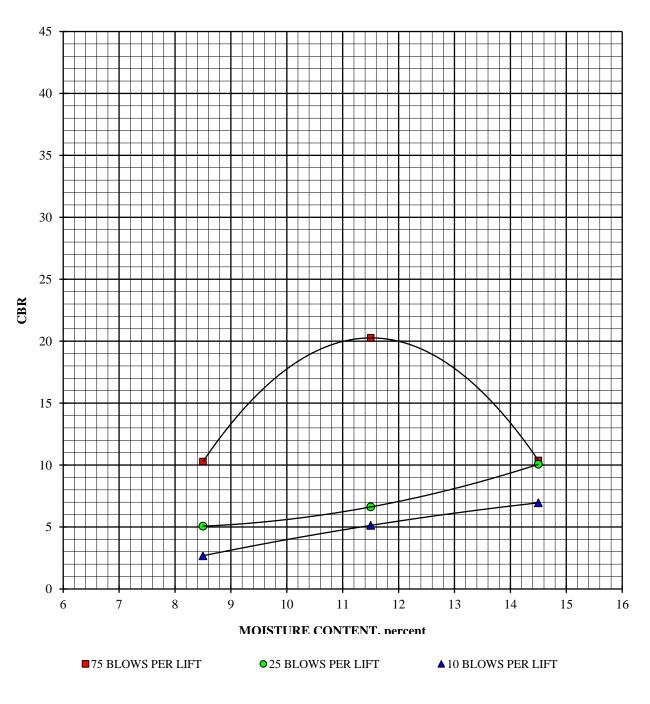
ASTM D 1883-16 (For a Range of Moisture Contents)

MOISTURE-DENSITY COMPACTION TEST

PROCEDURE USED: A PREPARATION METHOD: Moist RAMMER TYPE: Mechanical SPECIFIC GRAVITY: 2.70 (assumed)

302524-002

ASTM D 1557-12 (Modified)

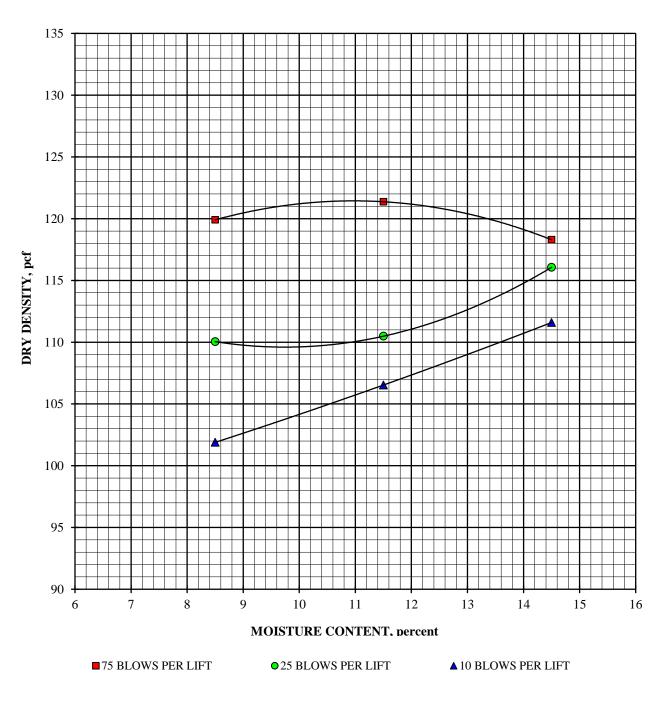

February 11, 2020 Boring #41 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

Boring #41 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT


302524-002

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

Boring #41 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. MOISTURE CONTENT

302524-002

CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

Boring #41 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

> 35 30 25 OPTIMUM 20 CBR 15 PLUS 3% 10 T \circ 5 MINUS 3% -0 90 95 100 105 120 110 115 125 130 135 DRY DENSITY, pcf ■75 BLOWS PER LIFT ●25 BLOWS PER LIFT ▲10 BLOWS PER LIFT

DRY DENSITY vs. CBR

Arranged According to Moisture Content

302524-002

CALIFORNIA BEARING RATIO

Boring #45 @ 1.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

With 5% Lime by Dry Weight

302524-002

February 11, 2020

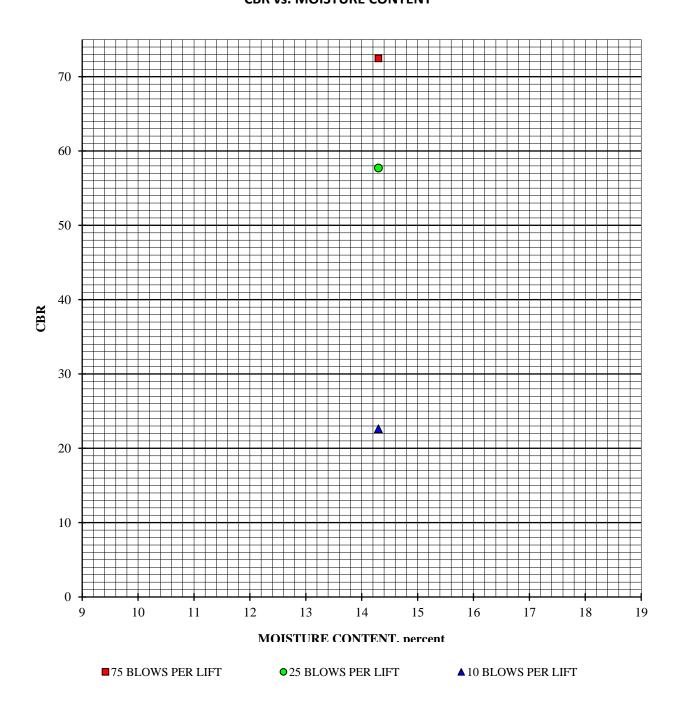
ASTM D 1883-16 (For a Range of Moisture Contents)

10 BLOWS PER LIFT

	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak			104.5
Moisture content, %, before soak			14.3
Moisture content, %, after soak, avg.			17.2
Moisture content, %, after soak, top 1"			16.4
Expansion, %, 96 hour soak			0.1
Bearing Ratio, 0.100" penetration			22.6

		Optimum	
	-3 Percent	Moisture	+ 3 percent
Dry density, pcf, before soak			111.3
Moisture content, %, before soak			14.3
Moisture content, %, after soak, avg.			17.2
Moisture content, %, after soak, top 1"			18.3
Expansion, %, 96 hour soak			0.0
Bearing Ratio, 0.100" penetration			57.7

75 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak			116.4	
Moisture content, %, before soak			14.3	
Moisture content, %, after soak, avg.			15.2	
Moisture content, %, after soak, top 1"			22.0	
Expansion, %, 96 hour soak			0.3	
Bearing Ratio, 0.100" penetration			72.5	


CALIFORNIA BEARING RATIO

Boring #45 @ 1.0 - 5.0'

Dark Brown Sandy Lean Clay (CL)

With 5% Lime by Dry Weight

CBR vs. MOISTURE CONTENT

302524-002

February 11, 2020

CALIFORNIA BEARING RATIO

Boring #45 @ 1.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

With 5% Lime by Dry Weight

DRY DENSITY vs. MOISTURE CONTENT

130 125 120 115 DRY DENSITY, pcf С 110 105 100 95 90 85 9 10 11 12 13 14 15 16 17 18 19 **MOISTURE CONTENT, percent** ■75 BLOWS PER LIFT •25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

302524-002

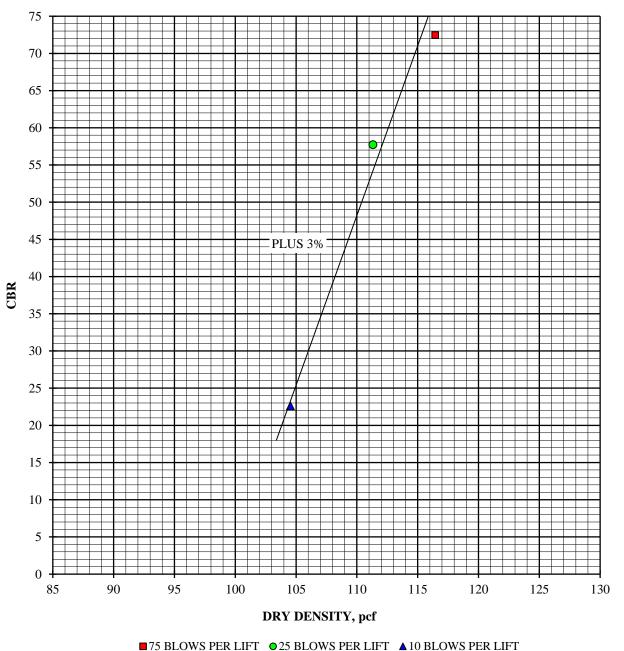
February 11, 2020

CALIFORNIA BEARING RATIO

Boring #45 @ 1.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

With 5% Lime by Dry Weight

ASTM D 1883-16 (For a Range of Moisture Contents)


M/ith E9/ Lim

February 11, 2020

302524-002

DRY DENSITY vs. CBR

Arranged According to Moisture Content

CALIFORNIA BEARING RATIO

Boring #46 @ 1.0 - 2.0'

Light Brown Well-Graded Sand with Silt and Gravel (SW-SM)

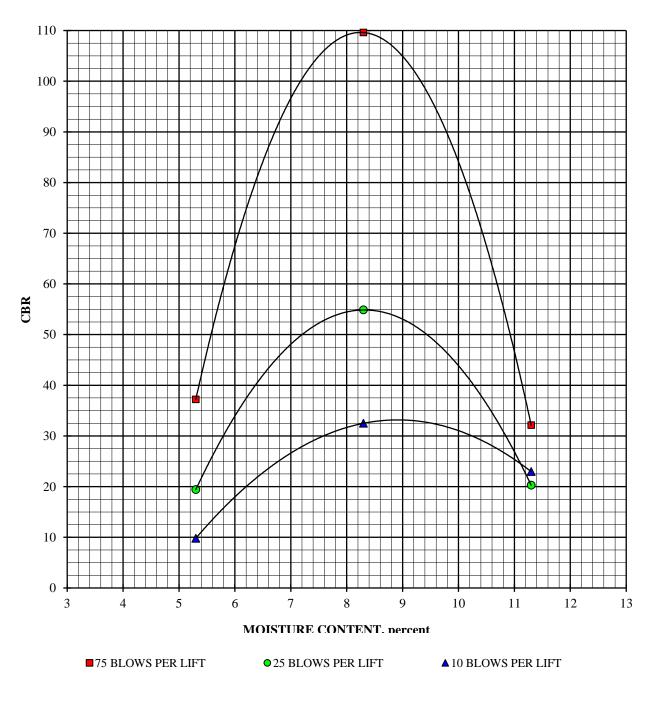
10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	112.6	120.2	118.6
Moisture content, %, before soak	5.3	8.3	11.3
Moisture content, %, after soak, avg.	9.9	10.0	13.8
Moisture content, %, after soak, top 1"	13.2	11.6	13.1
Expansion, %, 96 hour soak	0.3	0.9	0.2
Bearing Ratio, 0.100" penetration	9.8	32.5	23.0

25 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak	117.3	123.9	121.8	
Moisture content, %, before soak	5.3	8.3	11.3	
Moisture content, %, after soak, avg.	10.0	9.4	12.3	
Moisture content, %, after soak, top 1"	12.1	10.0	11.0	
Expansion, %, 96 hour soak	0.2	0.8	0.3	
Bearing Ratio, 0.100" penetration	19.4	54.9	20.3	

75 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	122.1	128.9	124.3
Moisture content, %, before soak	5.3	8.3	11.3
Moisture content, %, after soak, avg.	11.9	9.2	12.7
Moisture content, %, after soak, top 1"	10.5	8.8	10.9
Expansion, %, 96 hour soak	0.3	0.6	0.1
Bearing Ratio, 0.100" penetration	37.2	109.6	32.1

302524-002

ASTM D 1883-16 (For a Range of Moisture Contents)



CALIFORNIA BEARING RATIO

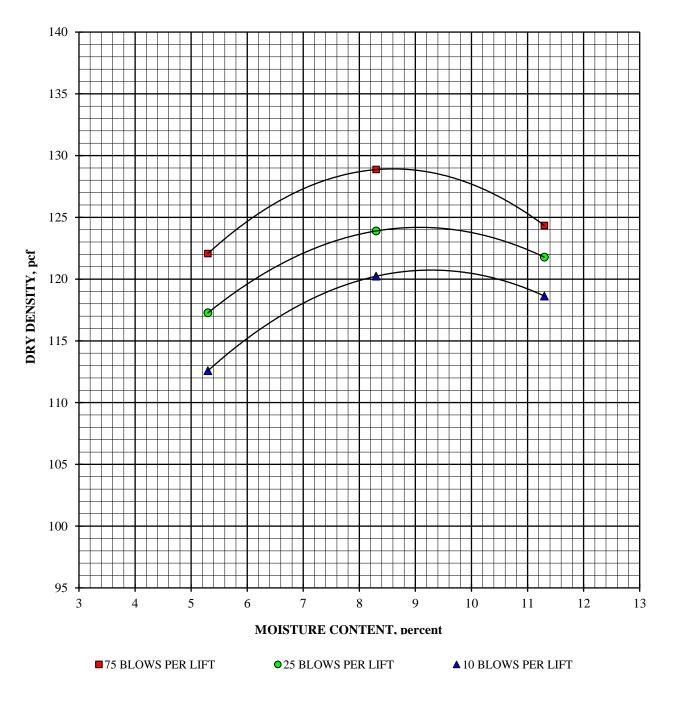
ASTM D 1883-16 (For a Range of Moisture Contents)

Boring #46 @ 1.0 - 2.0'

Light Brown Well-Graded Sand with Silt and Gravel (SW-SM)

CBR vs. MOISTURE CONTENT

302524-002



CALIFORNIA BEARING RATIO

ASTM D 1883-16 (For a Range of Moisture Contents)

Boring #46 @ 1.0 - 2.0'

Light Brown Well-Graded Sand with Silt and Gravel (SW-SM)

DRY DENSITY vs. MOISTURE CONTENT

302524-002

CALIFORNIA BEARING RATIO

Boring #46 @ 1.0 - 2.0'

Light Brown Well-Graded Sand with Silt and Gravel (SW-SM)

DRY DENSITY vs. CBR

Arranged According to Moisture Content

■75 BLOWS PER LIFT ●25 BLOWS PER LIFT ▲10 BLOWS PER LIFT

302524-002

February 11, 2020

CALIFORNIA BEARING RATIO

Boring #54 @ 4.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	98.6	103.4	108.2
Moisture content, %, before soak	10.8	13.8	16.8
Moisture content, %, after soak, avg.	21.9	23.0	20.0
Moisture content, %, after soak, top 1"	23.6	25.4	24.3
Expansion, %, 96 hour soak	2.8	1.3	0.0
Bearing Ratio, 0.100" penetration	2.3	2.6	6.9

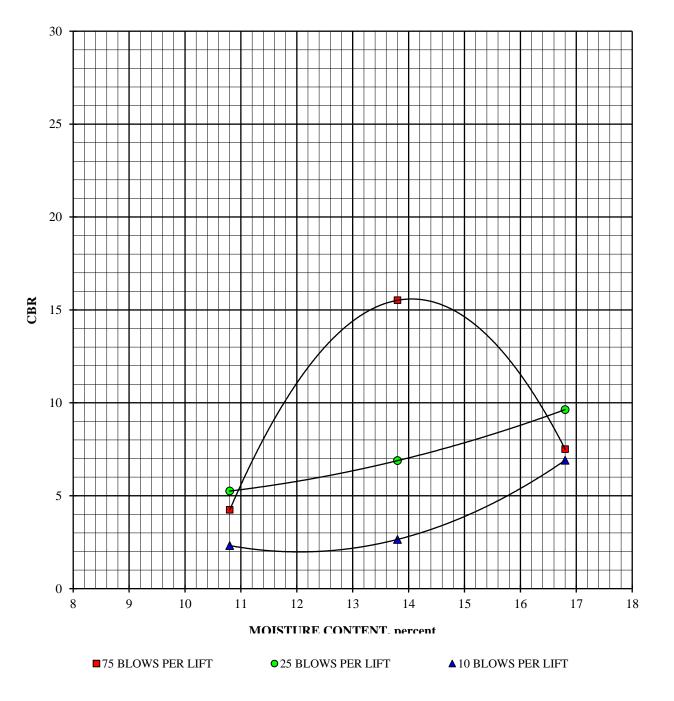
25 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak	109.6	113.4	112.8	
Moisture content, %, before soak	10.8	13.8	16.8	
Moisture content, %, after soak, avg.	9.8	18.5	20.6	
Moisture content, %, after soak, top 1"	23.5	23.2	20.9	
Expansion, %, 96 hour soak	1.9	0.8	0.1	
Bearing Ratio, 0.100" penetration	5.3	6.9	9.6	

75 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	
before soak	117.0	119.8	
t. %. before soak	10.8	13.8	

Dry density, pcf, before soak	117.0	119.8	109.2
Moisture content, %, before soak	10.8	13.8	16.8
Moisture content, %, after soak, avg.	17.2	15.1	23.6
Moisture content, %, after soak, top 1"	26.7	21.0	20.3
Expansion, %, 96 hour soak	2.0	0.6	0.3
Bearing Ratio, 0.100" penetration	4.2	15.5	7.5

ASTM D 1883-16 (For a Range of Moisture Contents)

February 11, 2020

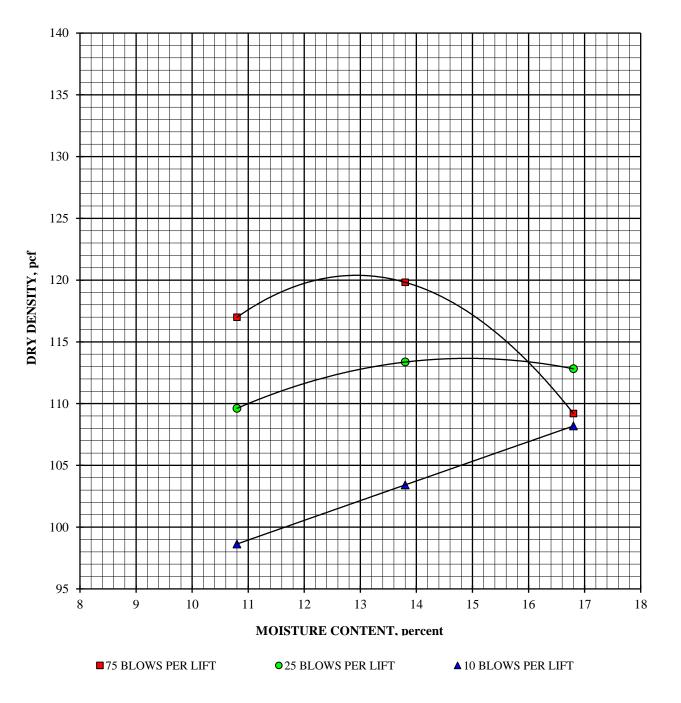

+ 3 percent

302524-002

CALIFORNIA BEARING RATIO

Boring #54 @ 4.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT


302524-002

ASTM D 1883-16 (For a Range of Moisture Contents)

CALIFORNIA BEARING RATIO

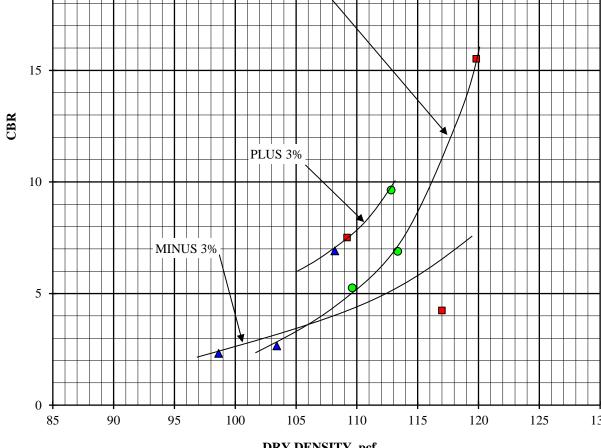
Boring #54 @ 4.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. MOISTURE CONTENT

302524-002

February 11, 2020

CALIFORNIA BEARING RATIO


Boring #54 @ 4.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

> 25 20 OPTIMUM 15 PLUS 3% 10 ¢ MINUS 3% 5 \checkmark ☆ 0 85 90 95 100 105 110 115 120 125 130 DRY DENSITY, pcf

DRY DENSITY vs. CBR Arranged According to Moisture Content 302524-002

February 11, 2020

ASTM D 1883-16 (For a Range of Moisture Contents)

■75 BLOWS PER LIFT ●25 BLOWS PER LIFT ▲10 BLOWS PER LIFT

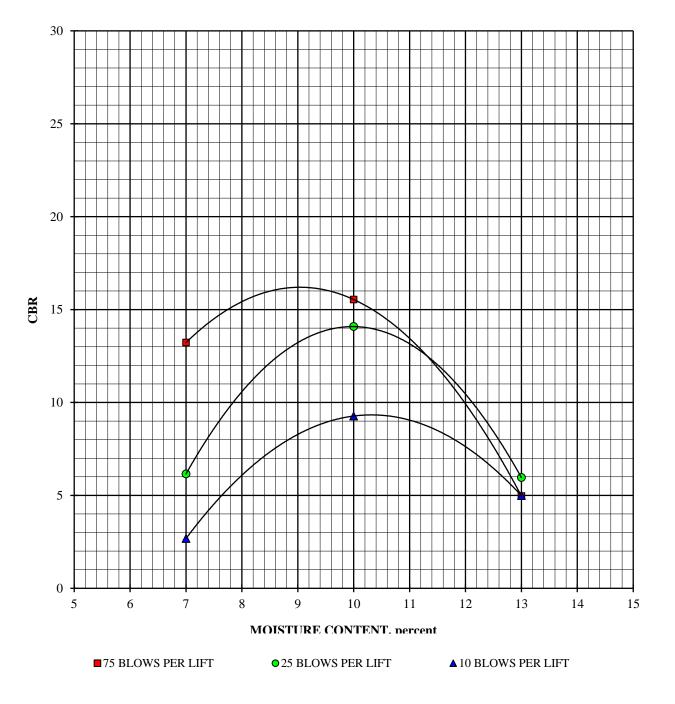
CALIFORNIA BEARING RATIO

Boring #55 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

10 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak	107.0	114.1	111.1	
Moisture content, %, before soak	7.0	10.0	13.0	
Moisture content, %, after soak, avg.	18.3	11.4	15.3	
Moisture content, %, after soak, top 1"	20.1	15.0	15.1	
Expansion, %, 96 hour soak	0.3	0.2	0.0	
Bearing Ratio, 0.100" penetration	2.7	9.3	5.0	

25 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak	115.5	122.5	117.7	
Moisture content, %, before soak	7.0	10.0	13.0	
Moisture content, %, after soak, avg.	10.7	11.3	13.8	
Moisture content, %, after soak, top 1"	19.2	17.2	14.5	
Expansion, %, 96 hour soak	0.2	0.2	0.1	
Bearing Ratio, 0.100" penetration	6.2	14.1	6.0	

75 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	124.4	125.5	117.5
Moisture content, %, before soak	7.0	10.0	13.0
Moisture content, %, after soak, avg.	10.7	10.1	13.7
Moisture content, %, after soak, top 1"	16.2	15.6	13.3
Expansion, %, 96 hour soak	0.1	0.2	0.1
Bearing Ratio, 0.100" penetration	13.2	15.5	5.0

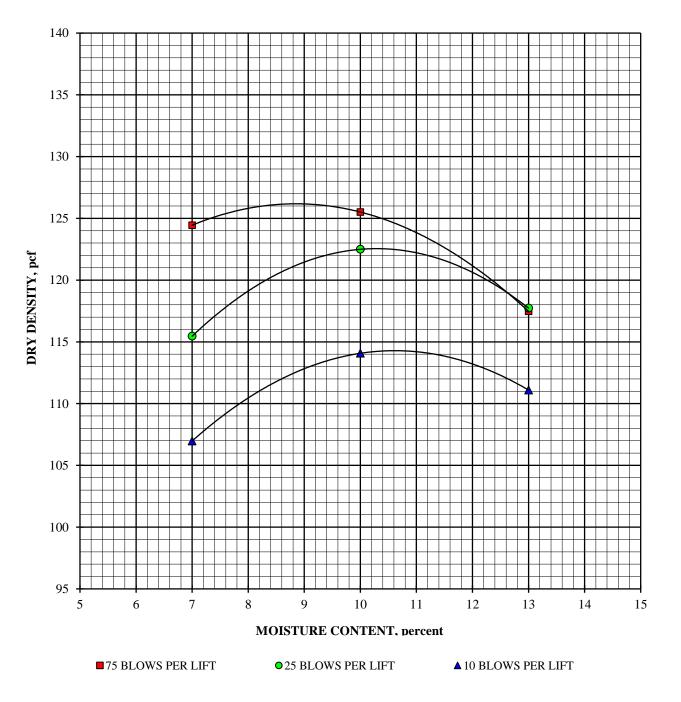

ASTM D 1883-16 (For a Range of Moisture Contents)

302524-002

CALIFORNIA BEARING RATIO

Boring #55 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT


302524-002

February 11, 2020

CALIFORNIA BEARING RATIO

Boring #55 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. MOISTURE CONTENT

302524-002

February 11, 2020

CALIFORNIA BEARING RATIO

Boring #55 @ 1.5 - 5.0' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. CBR

Arranged According to Moisture Content

302524-002

February 11, 2020

ASTM D 1883-16 (For a Range of Moisture Contents)

■75 BLOWS PER LIFT ●25 BLOWS PER LIFT ▲10 BLOWS PER LIFT

CALIFORNIA BEARING RATIO

Boring #62 @ 2.0 - 5.0' Dark Brown Sandy Lean Clay (CL)

With 5% Lime by Dry Weight

10 BLOWS PER LIFT

	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak			105.2
Moisture content, %, before soak			13.9
Moisture content, %, after soak, avg.			19.0
Moisture content, %, after soak, top 1"			16.9
Expansion, %, 96 hour soak			0.0
Bearing Ratio, 0.100" penetration			38.8

25 BLOWS PER LIFT

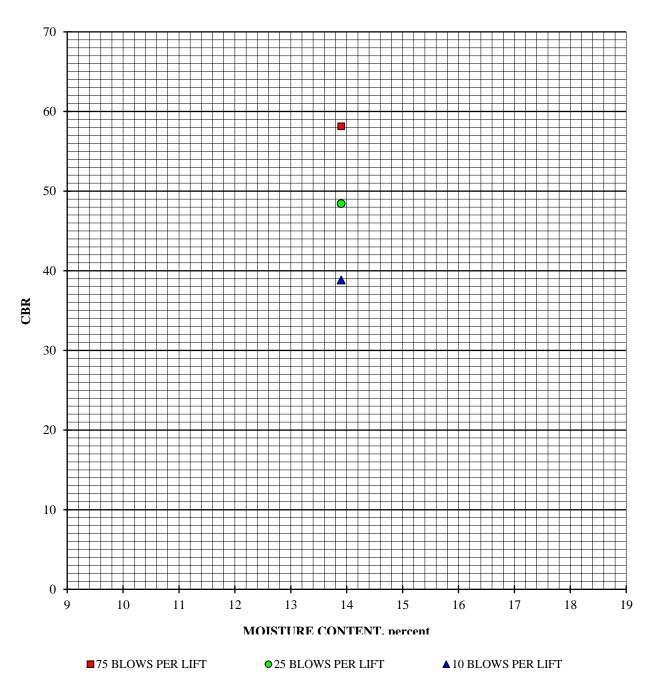
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak			111.5
Moisture content, %, before soak			13.9
Moisture content, %, after soak, avg.			15.7
Moisture content, %, after soak, top 1"			17.2
Expansion, %, 96 hour soak			0.0
Bearing Ratio, 0.100" penetration			48.4

75 BLOWS PER LIFT

	-3 Percent	Optimum Moisture	+ 3 percent
	JTCTCCTT	Wolsture	· s percent
Dry density, pcf, before soak			114.6
Moisture content, %, before soak			13.9
Moisture content, %, after soak, avg.			15.2
Moisture content, %, after soak, top 1"			22.0
Expansion, %, 96 hour soak			1.2
Bearing Ratio, 0.100" penetration			58.1

302524-002

February 11, 2020


CALIFORNIA BEARING RATIO

Boring #62 @ 2.0 - 5.0'

Dark Brown Sandy Lean Clay (CL)

With 5% Lime by Dry Weight

CBR vs. MOISTURE CONTENT

302524-002

February 11, 2020

CALIFORNIA BEARING RATIO

Boring #62 @ 2.0 - 5.0'

Dark Brown Sandy Lean Clay (CL)

With 5% Lime by Dry Weight

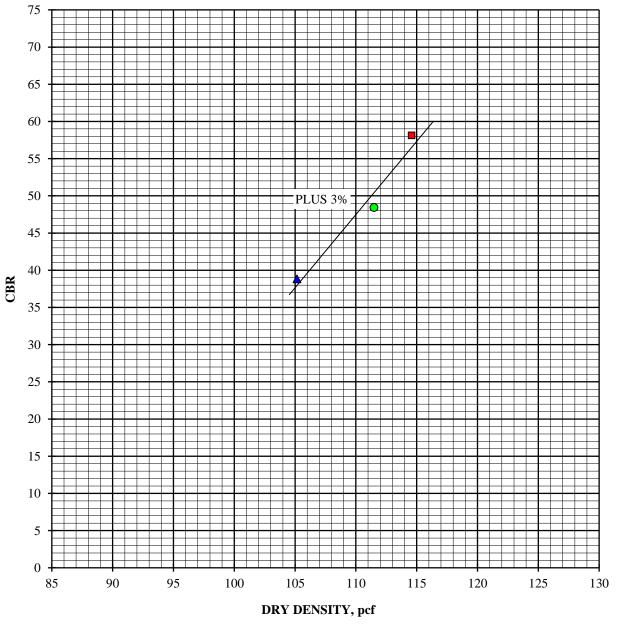
DRY DENSITY vs. MOISTURE CONTENT

130 125 120 115 DRY DENSITY, pcf 110 105 100 95 90 85 9 10 11 12 13 14 15 16 17 18 19 **MOISTURE CONTENT, percent** ■75 BLOWS PER LIFT •25 BLOWS PER LIFT ▲ 10 BLOWS PER LIFT

302524-002

February 11, 2020

CALIFORNIA BEARING RATIO


Boring #62 @ 2.0 - 5.0'

Dark Brown Sandy Lean Clay (CL)

With 5% Lime by Dry Weight

DRY DENSITY vs. CBR

Arranged According to Moisture Content

■75 BLOWS PER LIFT ●25 BLOWS PER LIFT ▲10 BLOWS PER LIFT

302524-002

February 11, 2020

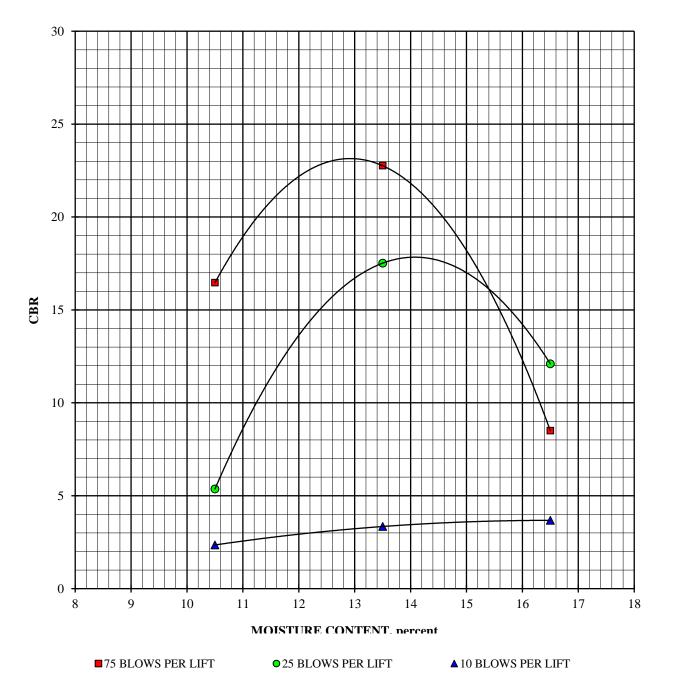
CALIFORNIA BEARING RATIO

Boring #66 @ 4.0 - 5.0' Dark Brown Silty, Clayey Sand (SC-SM)

10 BLOWS PER LIFT			
	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	99.2	101.9	109.0
Moisture content, %, before soak	10.5	13.5	16.5
Moisture content, %, after soak, avg.	26.1	25.6	20.1
Moisture content, %, after soak, top 1"	26.5	25.4	21.1
Expansion, %, 96 hour soak	6.8	1.5	0.2
Bearing Ratio, 0.100" penetration	2.4	3.3	3.7

25 BLOWS PER LIFT				
	-3 Percent	Optimum Moisture	+ 3 percent	
Dry density, pcf, before soak	108.6	111.8	113.6	
Moisture content, %, before soak	10.5	13.5	16.5	
Moisture content, %, after soak, avg.	21.9	19.4	-188.3	
Moisture content, %, after soak, top 1"	22.9	19.0	19.1	
Expansion, %, 96 hour soak	8.0	3.9	0.9	
Bearing Ratio, 0.100" penetration	5.4	17.5	12.1	

	-3 Percent	Optimum Moisture	+ 3 percent
Dry density, pcf, before soak	115.0	120.1	115.1
Moisture content, %, before soak	10.5	13.5	16.5
Moisture content, %, after soak, avg.	18.2	16.7	18.8
Moisture content, %, after soak, top 1"	18.7	18.1	17.4
Expansion, %, 96 hour soak	5.3	3.2	0.2
Bearing Ratio, 0.100" penetration	16.5	22.8	8.5


302524-002

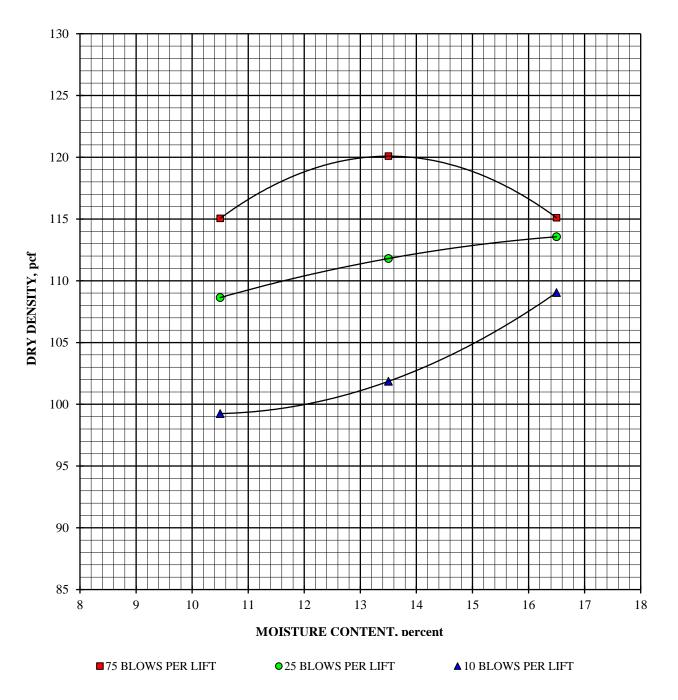
ASTM D 1883-16 (For a Range of Moisture Contents)
February 11, 2020

CALIFORNIA BEARING RATIO

Boring #66 @ 4.0 - 5.0' Dark Brown Silty, Clayey Sand (SC-SM)

CBR vs. MOISTURE CONTENT

302524-002

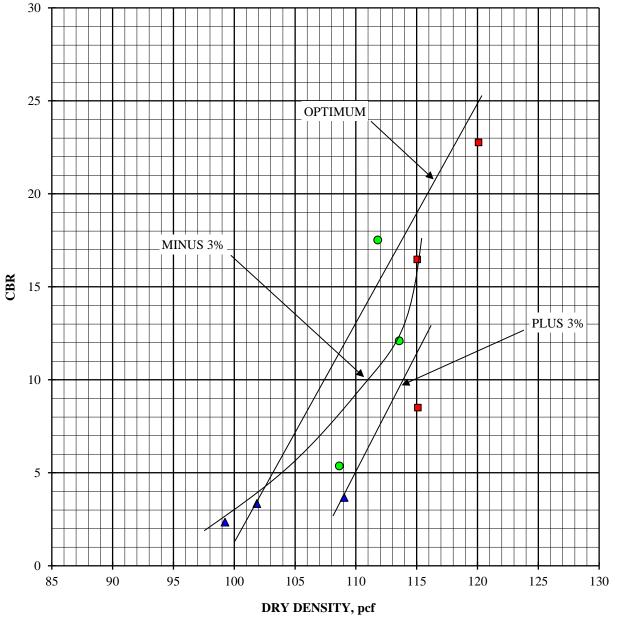

ASTM D 1883-16 (For a Range of Moisture Contents)

CALIFORNIA BEARING RATIO

Boring #66 @ 4.0 - 5.0'

Dark Brown Silty, Clayey Sand (SC-SM)

DRY DENSITY vs. MOISTURE CONTENT


302524-002

February 11, 2020

CALIFORNIA BEARING RATIO

Boring #66 @ 4.0 - 5.0' Dark Brown Silty, Clayey Sand (SC-SM)

DRY DENSITY vs. CBR

Arranged According to Moisture Content

■75 BLOWS PER LIFT ●25 BLOWS PER LIFT ▲10 BLOWS PER LIFT

302524-002

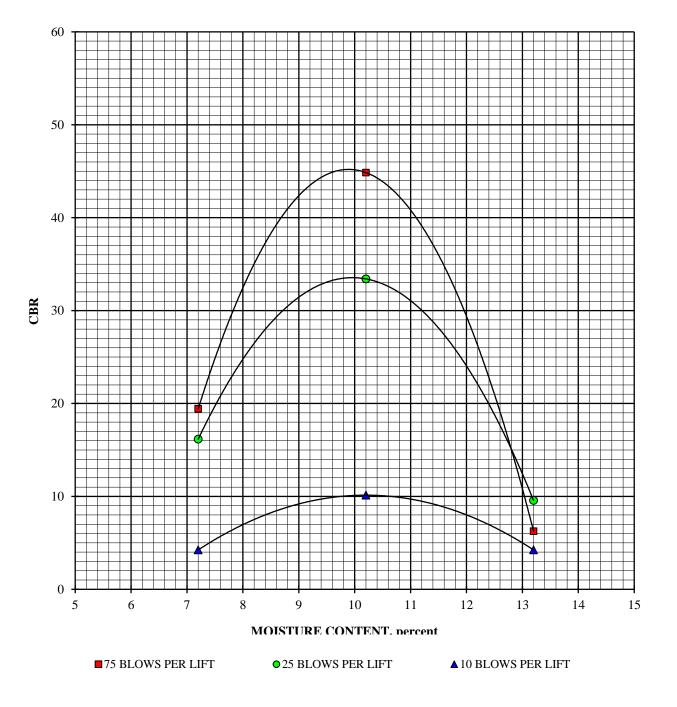
February 11, 2020

CALIFORNIA BEARING RATIO

Boring #70 @ 1.5 - 4.5' Dark Brown Sandy Lean Clay (CL)

10 BLOWS PER LIFT					
	-3 Percent	Optimum Moisture	+ 3 percent		
Dry density, pcf, before soak	107.1	111.0	115.4		
Moisture content, %, before soak	7.2	10.2	13.2		
Moisture content, %, after soak, avg.	18.9	11.7	14.7		
Moisture content, %, after soak, top 1"	22.7	19.8	17.6		
Expansion, %, 96 hour soak	1.4	2.4	0.1		
Bearing Ratio, 0.100" penetration	4.2	10.1	4.2		

25 BLOWS PER LIFT					
	-3 Percent	Optimum Moisture	+ 3 percent		
Dry density, pcf, before soak	116.8	119.8	117.7		
Moisture content, %, before soak	7.2	10.2	13.2		
Moisture content, %, after soak, avg.	10.7	11.6	13.9		
Moisture content, %, after soak, top 1"	18.6	17.7	16.4		
Expansion, %, 96 hour soak	1.1	1.6	0.1		
Bearing Ratio, 0.100" penetration	16.2	33.4	9.6		

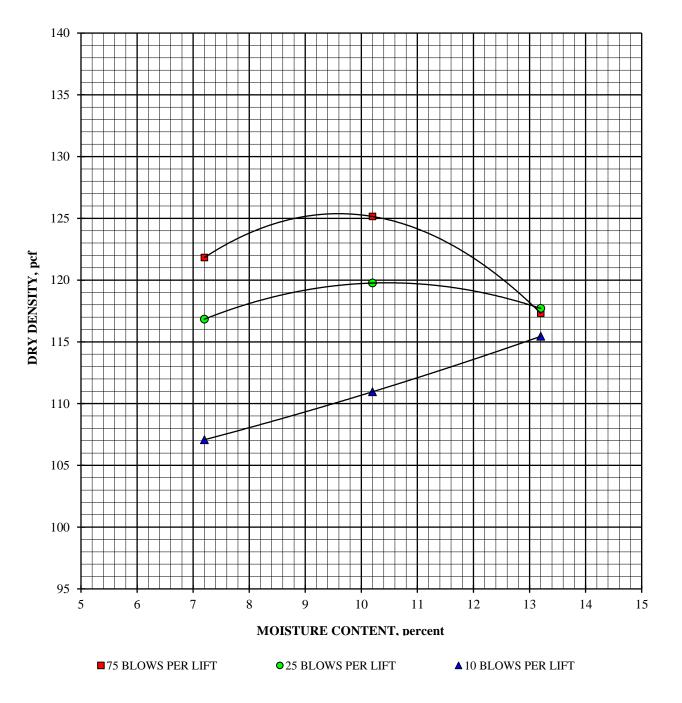

75 BLOWS PER LIFT					
	-3 Percent	Optimum Moisture	+ 3 percent		
Dry density, pcf, before soak	121.8	125.2	117.3		
Moisture content, %, before soak	7.2	10.2	13.2		
Moisture content, %, after soak, avg.	13.2	12.7	15.1		
Moisture content, %, after soak, top 1"	16.9	14.9	14.5		
Expansion, %, 96 hour soak	1.6	0.4	0.2		
Bearing Ratio, 0.100" penetration	19.4	44.9	6.2		

302524-002

CALIFORNIA BEARING RATIO

Boring #70 @ 1.5 - 4.5' Dark Brown Sandy Lean Clay (CL)

CBR vs. MOISTURE CONTENT

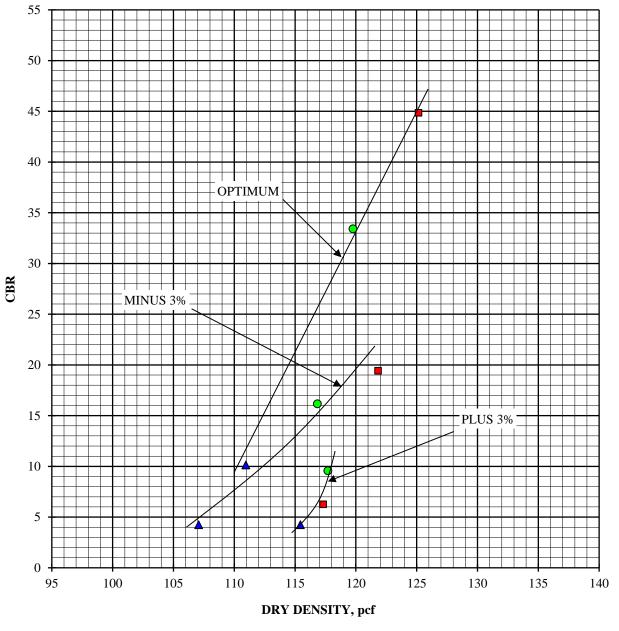

302524-002

February 11, 2020

CALIFORNIA BEARING RATIO

Boring #70 @ 1.5 - 4.5' Dark Brown Sandy Lean Clay (CL)

DRY DENSITY vs. MOISTURE CONTENT


302524-002

February 11, 2020

CALIFORNIA BEARING RATIO

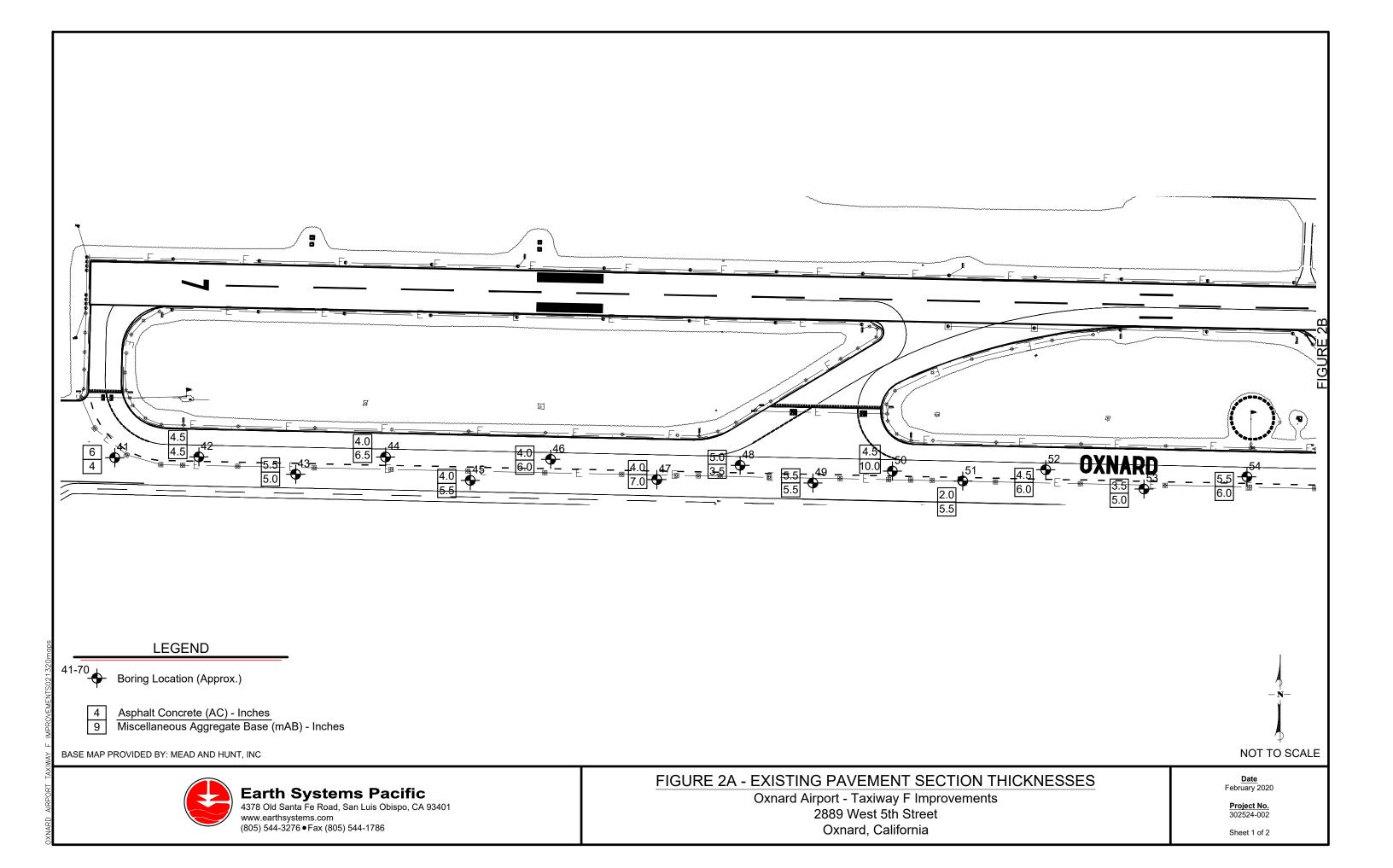
Boring #70 @ 1.5 - 4.5' Dark Brown Sandy Lean Clay (CL)

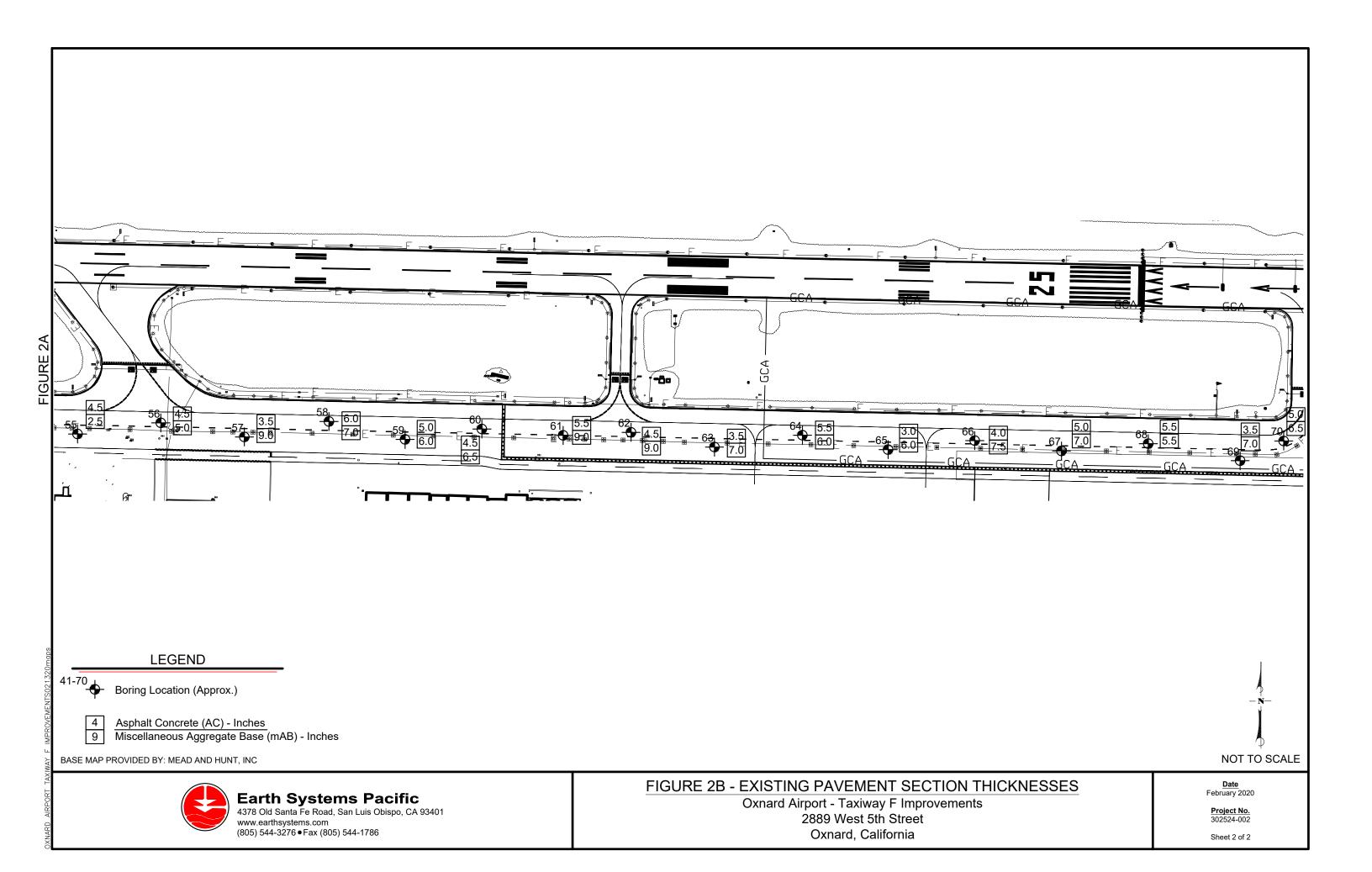
DRY DENSITY vs. CBR

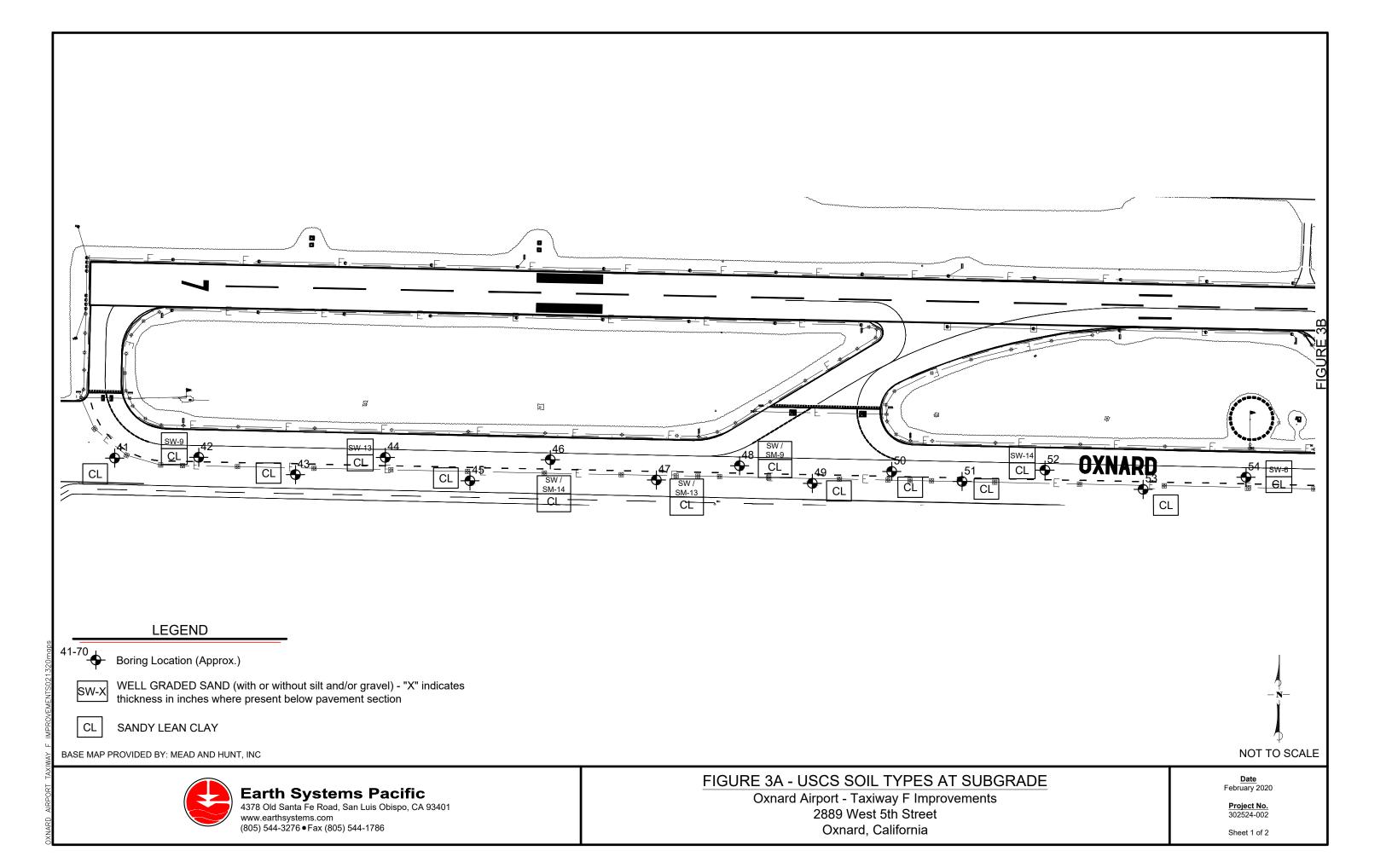
Arranged According to Moisture Content

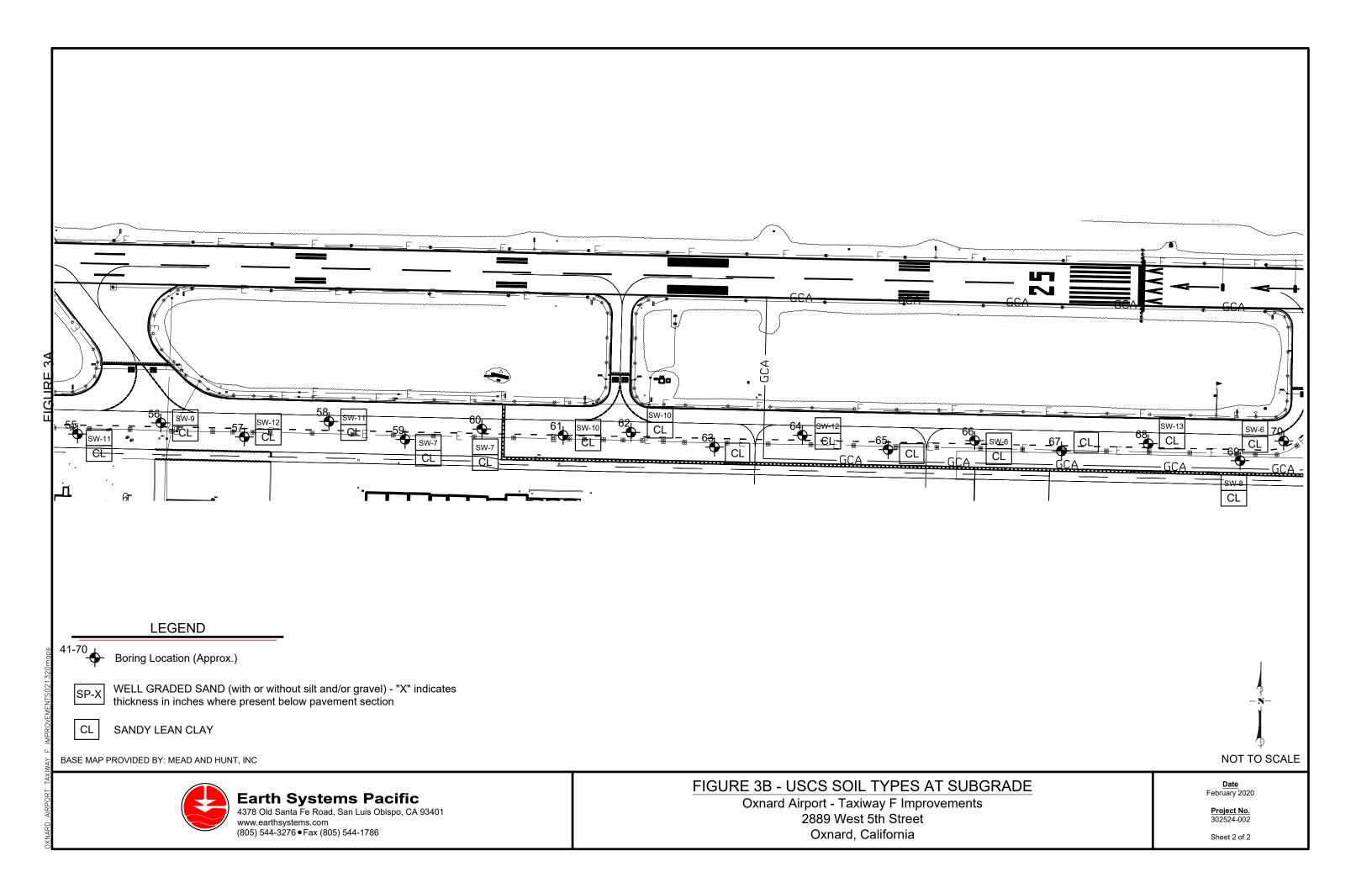
ASTM D 1883-16 (For a Range of Moisture Contents)

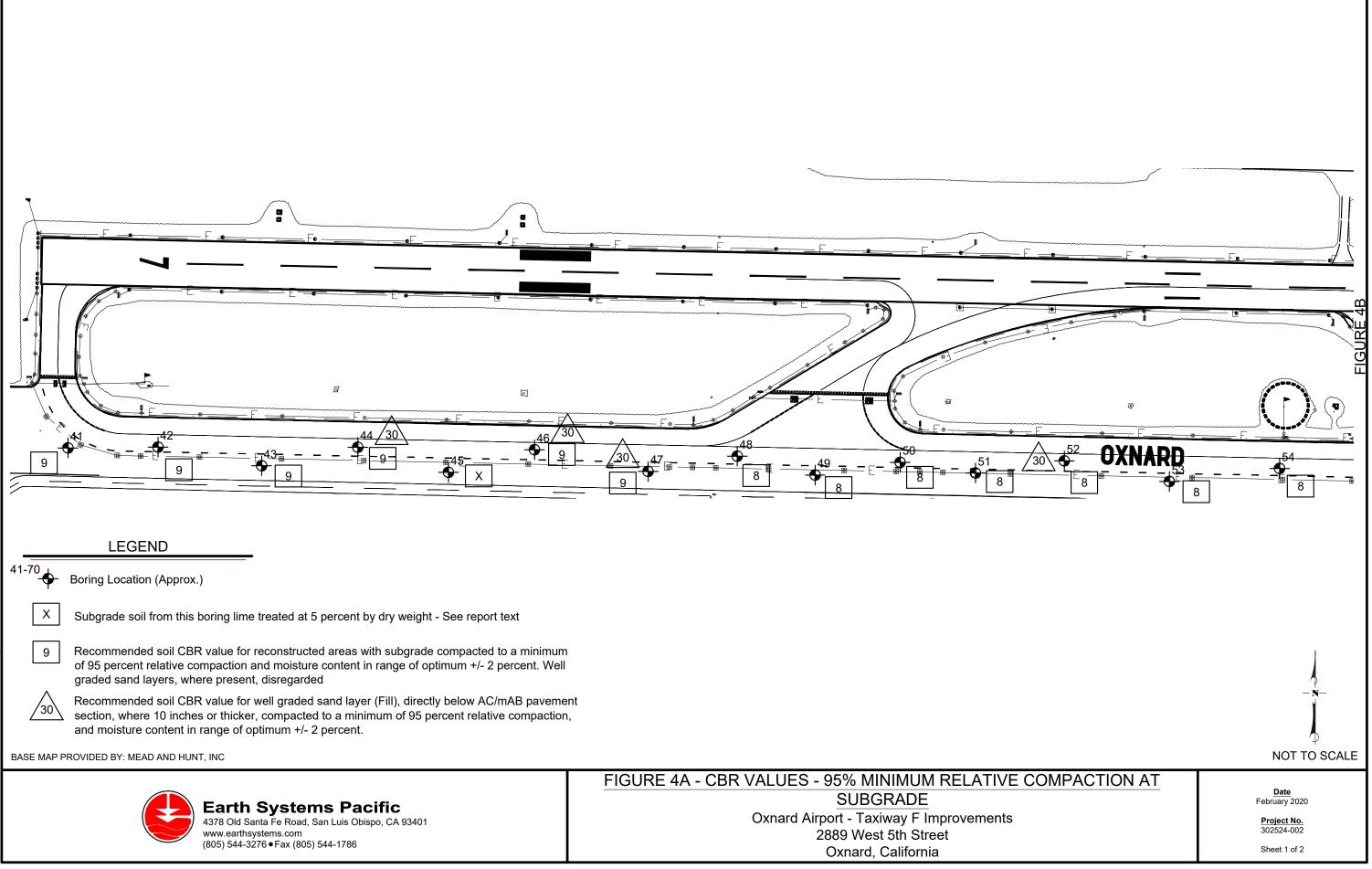
February 11, 2020

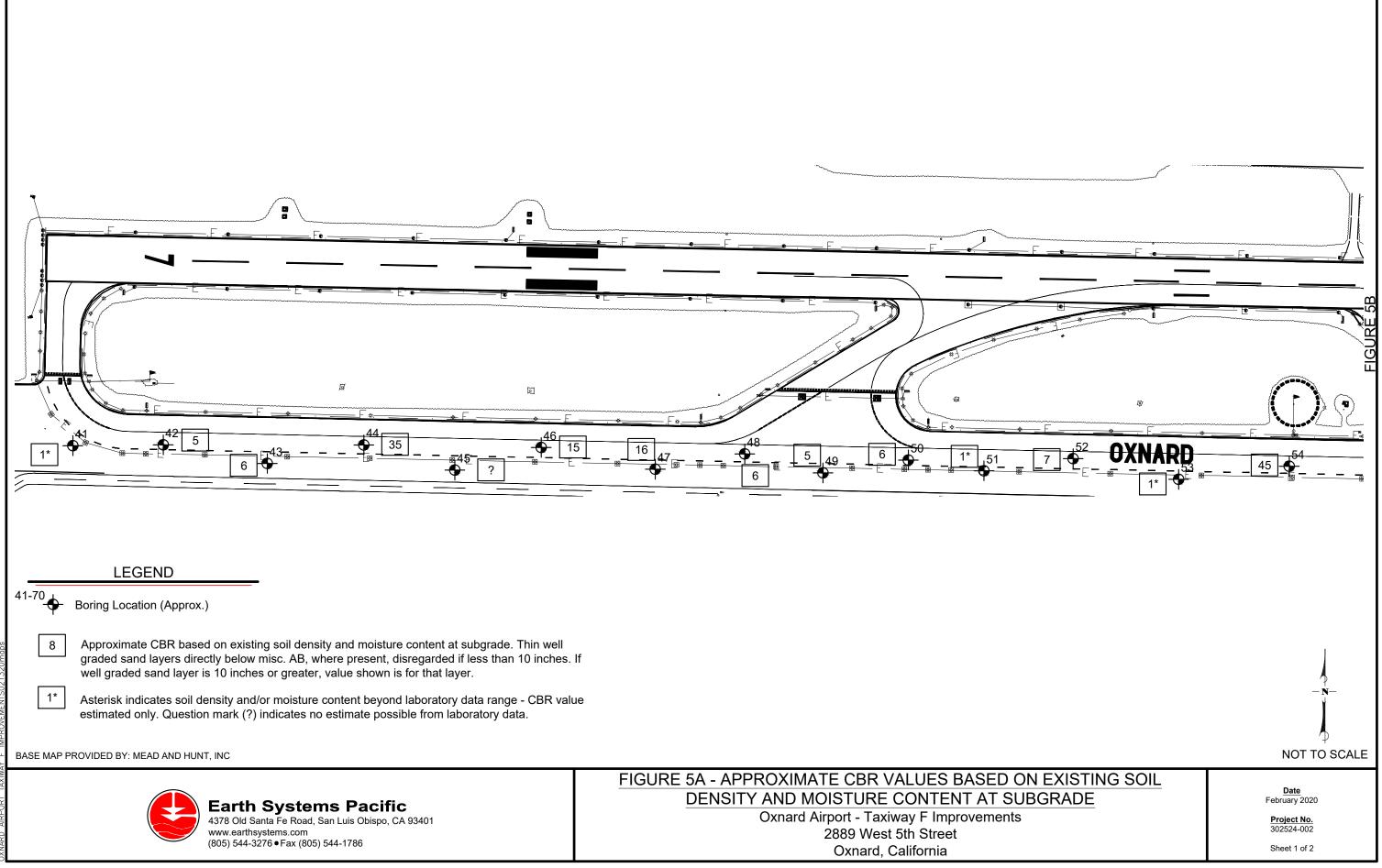

302524-002

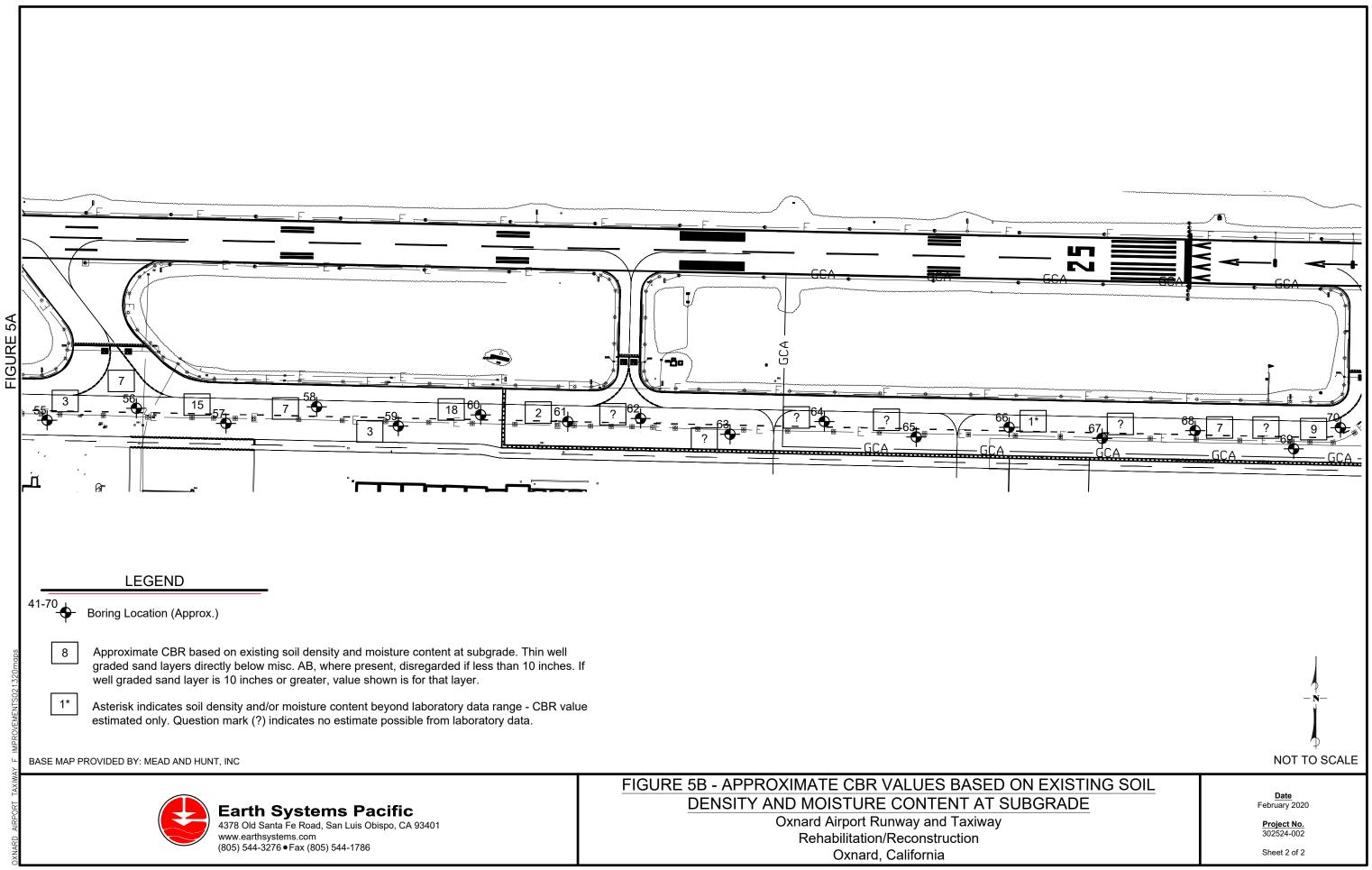

■75 BLOWS PER LIFT ●25 BLOWS PER LIFT ▲10 BLOWS PER LIFT

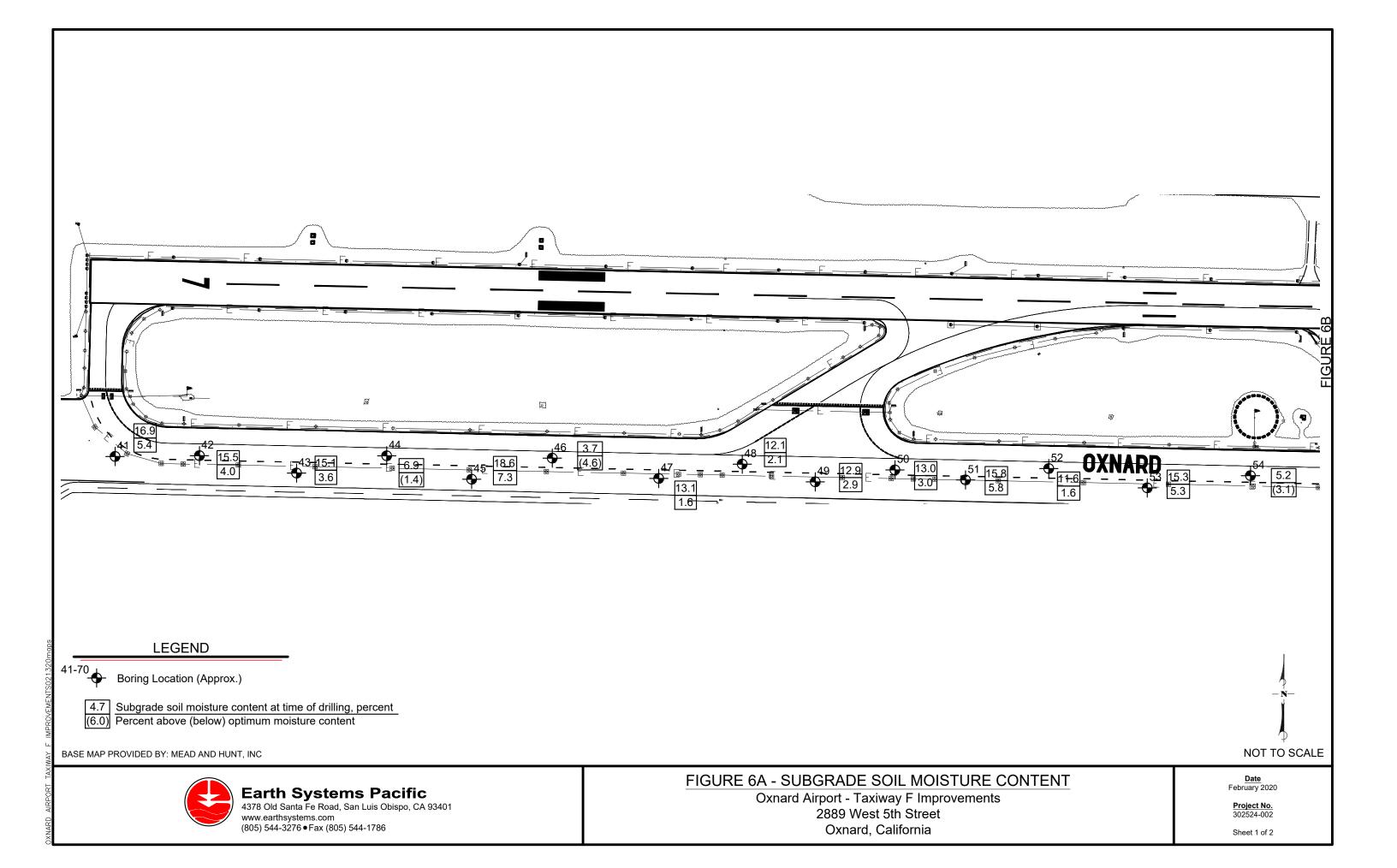

INTENTIONALLY BLANK

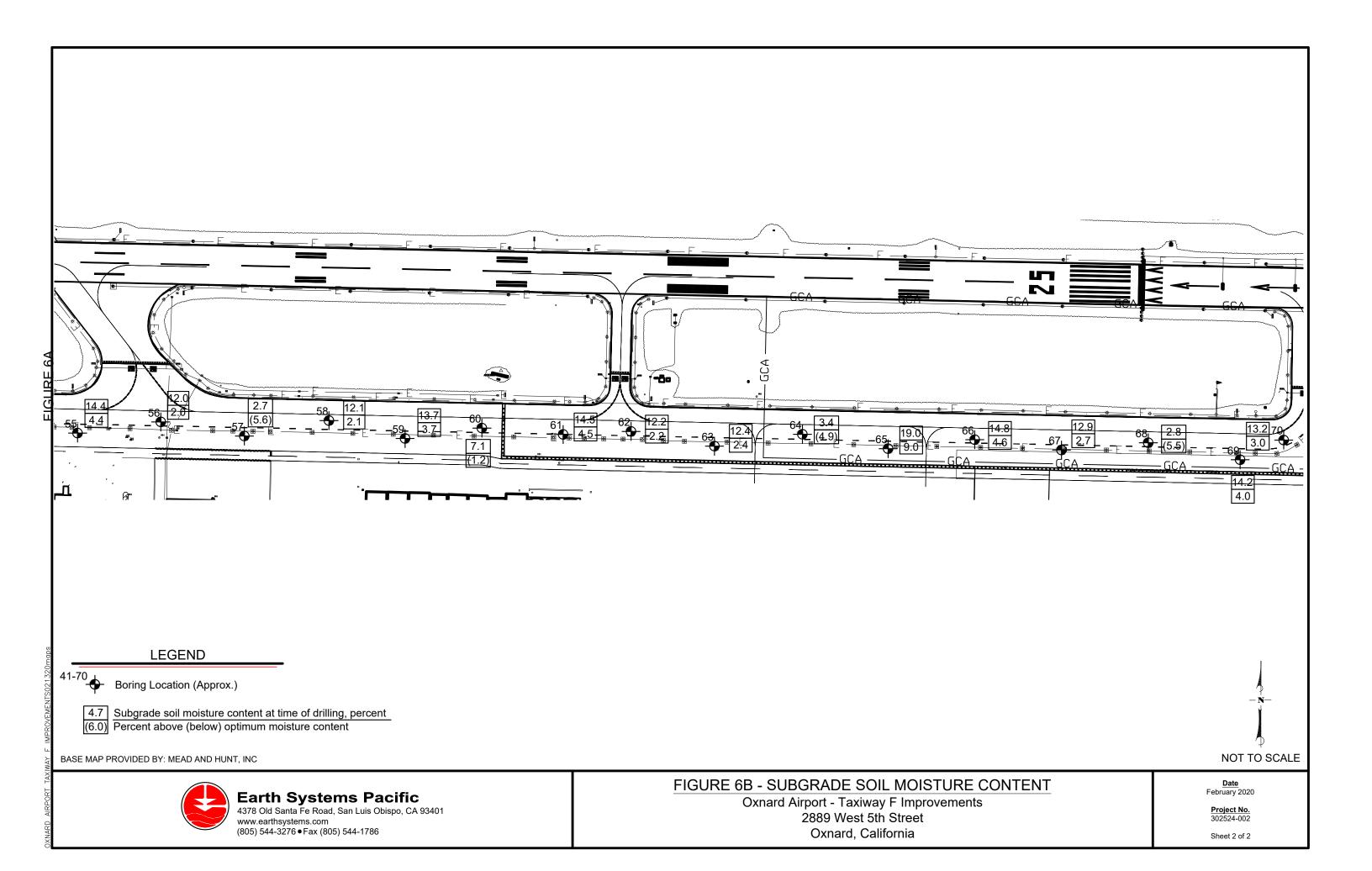

APPENDIX C


Figures 2A and 2B – Existing Pavement Section Thicknesses Figures 3A and 3B – USCS Soil Types at Subgrade Figures 4A and 4B – CBR Values – 95% Minimum Relative Compaction at Subgrade Figures 5A and 5B – Approximate CBR Values Based on Existing Soil Density and Moisture Content at Subgrade Figures 6A and 6B – Subgrade Soil Moisture Content INTENTIONALLY BLANK









APPENDIX D

Estimates of Earthwork Shrinkage

OXNARD AIRPORT

ESP File No. 302524-002

Page 1 of 1

TAXIWAY F IMPROVEMENTS

Estimates of Soil Shrinkage Using In-Place Density Values from Borings and Assumed Final Relative Compaction Values. All Calculations Based on Uniform Density, Moisture Content and Compaction Effort Negative Values Indicate Expansion (Bulking).

Boring No.	Depth	Material Description	USC5 Classificatior	Maximum Density, pcf	Optimum Moisture, %
41	1.5 - 5.0 ft	Dark Brown Sandy Lean Clay	CL	122.7	11.5
45	1.0 - 5.0 ft	Dark Brown Sandy Lean Clay	CL	123.1	11.3
46	1.0 - 2.0 ft	Lt Brn Well Gra Sand w/ Silt and Grav	SW-SM	128.7	8.3
54	4.0 - 5.0 ft	Dark Brown Sandy Lean Clay	CL	117.5	13.8
55	1.5 - 5 0 ft	Dark Brown Sandy Lean Clay	CL	125.4	10.0
62	2.0 - 5.0 ft.	Dark Brown Sandy Lean Clay	CL	124.7	10.9
66	4.0 - 5.0 ft	Dark Brown Silty, Clayey Sand	SC-SM	119.8	13,5
70	1.5 - 4.5	Dark Brown Sandy Lean Clay	CL	124.1	10.2

Boring	Depth, Ft. Below Ext.	Moisture in Place, %	Dry Density in Place, pcf		Existing Rel.Comp.	Shrinkage, % at 95.0 %	Shrinkage, % at 96.0 %	5 Shrinkage, % at 97.0 %	Shrinkage, % at 98.0 %	Shrinkage, % at 99.0 %	Shrinkage, at 100.0 %
	Grade				%	Rel. Comp.	Rel. Comp.	Rel. Comp.	Rel. Comp.	Rel. Comp.	Rel. Comp
41	1.0 - 1.5	16.9	107.9	122.7	87.9	8.0	9.2	10.3	11.4	12.6	13.7
42	1.5 - 2.0	15.5	112.3	122.7	91.5	3.8	4.9	6.0	7.1	8.2	9.3
43	1.0 - 1.5	15.1	115.9	122.7	94.5	0.6	1.6	2.7	3.7	4.8	5.9
44	1.5 - 2.0	6.9	120.7	128.7	93.8	1.3	2.4	3.4	4.5	5.6	6.6
45	1.0 - 1.5	18.6	106.3	123.1	86.4	10.0	11.2	12.3	13.5	14.6	15.8
46	1.0 - 1.5	3.7	117.1	128.7	91.0	4.4	5.5	6.6	7.7	8.8	9.9
47	1.0 - 1.5	13.1	116.4	122.7	94.9	0.1	1.2	2.3	3.3	4.4	5.4
48	1.0 - 1.5	12.1	114.8	125.4	91.5	3.8	4.9	6.0	7.0	8.1	9.2
49	1.0 - 1.5	12.9	114.7	125.4	91.5	3.9	5.0	6.0	7.1	8.2	9.3
50	1.0 - 1.5	13.0	119.0	125.4	94,9	0.1	1.2	2.2	3.3	4.3	5.4
51	1.0 - 1.5	15.8	111.4	125.4	88.8	6.9	8.1	9.2	10.3	11.4	12.6
52	1.5 - 2 .0	11.6	114.6	125.4	91.4	4.0	5.0	6.1	7.2	8.3	9.4
53	1.0 - 1.5	15.3	110.1	125.4	87.8	8.2	9.3	10.5	11.6	12.8	13.9
54	1.5 - 2.0	5.2	124.3	128.7	96.6	-1.6	-0.6	0.4	1.5	2.5	3.5
55	1.0 - 1.5	14.4	108.9	125.4	86.8	9.4	10.5	11.7	12.8	14.0	15.2
56	1.5 - 2.0	12.0	116.0	125,4	92.5	2.7	3.8	4.9	5.9	7.0	8.1
57	1.0 - 1.5	2.7	117.6	128.7	91.4	4.0	5.1	6.2	7.3	8.3	9.4
58	1.5 -2.0	12.1	115.5	125.4	92.1	3.1	4.2	5.3	6.4	7.5	8.6
59	1.5 -2.0	13.7	110.8	125.4	88.4	7.5	8.6	9.8	10.9	12.0	13.2
60	1.0 - 1.5	7.1	119.8	128.7	93.1	2.1	3.1	4.2	5.3	6.4	7.4
61	1.5 - 2.0	14.5	112.4	125.4	89.6	6.0	7.1	8.2	9.3	10.5	11.6
62	1.5 - 2.0	12.2	90.7	124.7	72.7	30.6	32.0	33.4	34,7	36.1	37,5
63	1.0 - 1.5	12.4	77.9	125.4	62.1	52.9	54.5	56.1	57.8	59.4	61.0
64	1.0 - 1.5	3.4	104.3	128.7	81.0	17.2	18.5	19.7	20.9	22.2	23.4
65	1.0 - 1.5	19.0	102.3	125.4	81.6	16.5	17.7	18.9	20.1	22.2	22.6
66	1.0 - 1.5	14.8	115.4	124.1	93.0	2.2	3.2	4.3	5.4	6.5	7.5
67	1.0 - 1.5	12.9	106.7	124.1	86.0	10.5	11.7	12.8	14.0	15,1	7.5 16.3
68	1.0 - 1.5	2.8	112.7	128.7	87.6	8.5	9.6	12.8	14.0	13.1	16.3 14.2
69	1.0 - 1.5	14.2	126.1	124.1	101.6	-6.5	-5.5	-4.5	-3.6	-2.6	
70	1.0 - 1.5	13.2	118.0	124.1	95.1	-0.1	1.0	2.0	-3.0	-2.6	-1.6
			age Shrinkage				8.5	9.6	10.7	4,1	5.2
				, - 1. , u i		At 95.0 %	At 96.0 %	9.0 At 97.0 %	At 98.0 %		13.0
						Rel. Comp.	Rel. Comp.	Rei. Comp.		At 99.0 %	At 100.0 %
						nei. comp.	Rei. comp.	Nel. comp.	Rel. Comp.	Rel. Comp.	Rel. Com

Part 2 – Addendum to Geotechnical Engineering Reports

Mead & Hunt

4378 Old Santa Fe Road | San Luis Obispo, CA 93401 | Ph: 805.544.3276 | www.earthsystems.com

July 10, 2020

FILE NO.: 302524-001 and 302524-002

Mr. Jeffrey Leonard, PE Vice President Mead & Hunt, Inc. 1360 19th Hole Drive, Suite 200 Windsor, CA 95492

PROJECT: OXNARD AIRPORT 2889 WEST 5TH STREET OXNARD, CALIFORNIA

Attached

Earth Systems

RUNWAY 7-25 AND TAXIWAY CONNECTOR IMPROVEMENTS TAXIWAY F IMPROVEMENTS

SUBJECT:Addendum to Geotechnical Engineering Reports – Sulfate Testing of SubgradeSoils for Evaluation of Lime Treatment Option

TECHNICAL REFS:

Dear Mr. Leonard:

As authorized, we have completed sulfate testing on samples of anticipated subgrade soils secured during the field investigations for our geotechnical engineering reports (ESP 2020a and 2020b) for these two projects. The purpose of testing was to satisfy the cautionary note in the introduction to Item P-155 Lime Treated Subgrade (FAA 2018) which states: "...The Engineer must check the soluble sulfate contents of the soils during design to determine if stabilization with lime can react and induce heave..."

As noted in *Recommended Practice for Stabilization of Sulfate-Rich Subgrade Soils* (NAP 2009), "...Even though stabilization improves engineering properties, problems can arise when calciumbased stabilizers (i.e., lime) are used in soils rich in sulfate-bearing minerals. Stabilization of sulfate-rich soils in the presence of excess moisture may lead to the formation of minerals such as ettringite and/or thaumasite and can cause distress in or even destruction of pavement structures due to heaving. However, the extent of such distress varies among soils and is dependent on factors including the strength of the soil matrix and the spatial distribution and arrangement of ettringite (and/or thaumasite) crystals in the matrix...Ettringite precipitation is a complex problem related not only to soil composition but also to construction methods, availability of water, ion migration, and void structures in pavements." This publication also

provides a table indicating the level of risk associated with the use of calcium-based (lime) stabilizers in sulfate rich soils. A partial reproduction of the table (sulfate concentrations listed in parts per million (ppm) rather than percent by dry weight) is as follows:

Risk Involved	Soluble Sulfate Concentrations - ppm
Low Risk	Below 3,000 ppm
Moderate Risk	Between 3,000 and 5,000 ppm
Moderate to High Risk	Between 5,000 and 8,000 ppm
High to Unacceptable Risk	Greater than 8,000 ppm
Unacceptable Risk	Greater than 10,000 ppm

On October 16, 2019, four samples from the Taxiway F Improvements project area were sent to HDR, Inc., of Claremont, California for soluble sulfate testing. The Chain of Custody & Request for Laboratory Testing documentation for these samples, as well as the test results, are included in Appendix A.

After the results from this initial round of sulfate testing were received and reviewed, it was noted that one of the samples showed a significant level (23,500 ppm) of soluble sulfates. Per the table above, the material would therefore have an unacceptable level of risk associated with calcium-based lime treatment. The other three samples had soluble sulfate levels of 3,930 ppm, 1,100 ppm and 169 ppm. This nonuniformity and significant disparity among the results led to consideration for additional testing.

To further characterize the subgrade soils, a second set of six total samples were authorized to be sent to HDR, Inc., for soluble sulfate testing. Four samples were selected from material maintained in our laboratory from the Runway 7-25 and Taxiway Connector Improvements project area, and two additional samples were from the Taxiway F Improvements area. The intent of the additional samples was to provide data for the entire extent of <u>both</u> project areas, and to determine, if possible, if the sulfate-rich conditions were only present in an isolated area. The Chain of Custody & Request for Laboratory Testing documentation for this second round of samples, as well as the test results, are included in Appendix B. This second round of testing yielded a similar disparity in the results, with values ranging from a low of 740 ppm to a high of 20,200 ppm.

The results from both rounds of soluble sulfate testing are plotted on a map of the combined projects in Appendix C. The map also indicates the locations of the exploratory borings performed for the two reports by this firm (ESP 2020a and 2020b).

Based on information contained in *Recommended Practice for Stabilization of Sulfate-Rich Subgrade Soils* (NAP 2009), a limited program of swell testing was completed to determine, if possible, the effect of extended mellowing time and remixing on a samples of lime treated soil prior to compaction. For this test, the soil sample with the greatest soluble sulfate content (Boring 41 from 1.5 to 5.0 feet below existing grade) was treated with 5 percent lime by dry weight (BDW), in single and full stages, with the following modified mellowing time periods:

- 1 stage 5 percent lime treatment BDW, 1 day mellowing period
- 2 stage 2.5 percent lime treatment BDW, 2 days mellowing period; 2.5 percent additional lime treatment, 1 day additional mellowing period
- 2 stage 2.5 percent lime treatment BDW, 4 days mellowing period; 2.5 percent additional lime treatment, 1 day additional mellowing period
- 2 stage 2.5 percent lime treatment BDW, 6 days mellowing period; 2.5 percent additional lime treatment, 1 day additional mellowing period

During the mellowing period, the treated soil was maintained in sealed plastic bags with moisture contents of 3 to 4 percent above optimum moisture. After completion of the various mellowing periods, the samples were recompacted at 95 percent of maximum dry density as standard one-dimensional consolidation samples (ASTM D 2435/D 2435M-11). The samples were then loaded with a surcharge of 100 psf (to simulate an overlying AC/AB pavement section approximately 8 to 9 inches thick), and fully inundated. All samples collapsed under the surcharge loading prior to swelling. Initial collapse values ranged from 0.0010 to 0.0015-inch. As of January 27, 2020, all four samples appeared to have reached a steady state condition, with no swell or collapse (measured to the nearest 0.0001-inch) for at least 2 days prior to final readings.

The results of the swell tests are provided in the summary graph in Appendix C. The graph is not a complete depiction of all swell readings taken over time for all samples, but rather a plot of the maximum swell values observed as of January 27, 2020, vs. the time for mellowing and additional

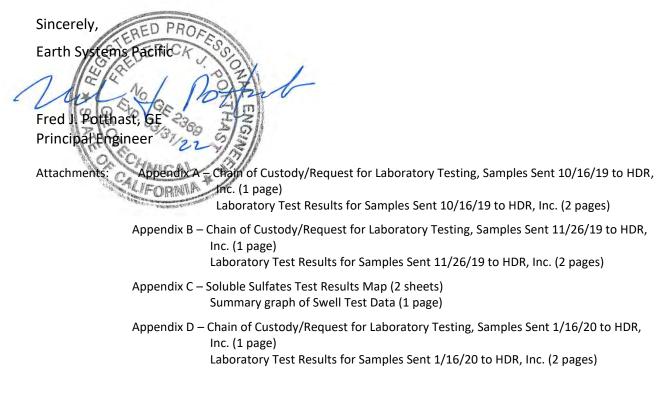
mixing prior to recompaction. The graph does indicate that, as noted in *Recommended Practice for Stabilization of Sulfate-Rich Subgrade Soils* (NAP 2009), the potential for swell is reduced with additional mellowing and mixing time.

As a final check on the effect of lime treatment, a sample of the 2-stage lime treated soil (5 percent total BDW) from Boring 41 at 1 to 5 feet that had mellowed for 13 days was sent to HDR, Inc., for soluble sulfate testing. The intent of this testing was to determine the residual sulfate level in the soil after lime treatment. The Chain of Custody & Request for Laboratory Testing documentation for this final round of testing, as well as the test results, are included in Appendix D. The result of this test was a residual soluble sulfate level of 677 ppm, a considerable reduction from the initially tested value (before lime treatment) of 23,500 ppm.

Based on this testing program, and on information obtained from *Recommended Practice for Stabilization of Sulfate-Rich Subgrade Soils* (NAP 2009), we recommend the following be incorporated in the plans for this project if it is elected to utilize lime treatment for improvement of subgrade soil strength and a subsequent reduction in the design pavement section. Information regarding subgrade soil strengths in the untreated and treated condition, and all other soil parameters, are contained in our project soil engineering reports (ESP 2020a and 2020b).

- The minimum percentage of lime treatment should be 5 percent by dry weight of material (BDW).
- 2. The *Recommended Practice for Stabilization of Sulfate-Rich Subgrade Soils* (NAP 2009) indicates that in Texas, a single full application of lime should be utilized, rather than a split application. Discussions with a lime treatment contractor in this area indicates split applications appear to be more successful for higher lime treatment percentages. For this project, we recommend that the lime treatment should be performed in two stages, slightly weighted more to the initial treatment (i.e., 3 percent initial and 2 percent secondary).
- 3. A minimum mellowing period of 7 days should be used for the initial stage, prior to the secondary lime treatment operation. During this initial mellowing period the lime-treated soil moisture content should be maintained at 4 to 5 percent above optimum as a

minimum. The lime treated soil moisture content should be checked frequently, and additional moisture added as necessary to maintain the chemical reaction. During the initial mellowing period, the lime treated soil should be remixed a minimum of 3 times after the initial mixing period. Adequate water during the mellowing process is critical, and all efforts should be made to keep the soil moisture contents as high as possible without sacrificing construction workability and quality.


- 4. After the initial mellowing and mixing period is complete, the second stage lime treatment process can be completed. The secondary mellowing period should be a minimum of 48 hours; the lime treated soil should be maintained at 4 to 5 percent above optimum as a minimum, and the soil should be remixed at least 1 additional time following the final lime treatment/mixing operation, prior to final compaction.
- 5. To assure plenty of soil moisture during the treatment/mixing/mellowing operation, the contractor should consider lime application via slurry rather than in dry form.
- 6. Consideration should be given to testing the source of construction water available for the contractor during the lime treatment process, to verify that sulfates will not be added to the lime treated soil during the moisture conditioning process.
- 7. During final compaction operations, the lime treated soil should be maintained at as high a moisture content as possible (i.e., 3 to 5 percent above optimum moisture content, or more), while still achieving the required relative compaction, and maintaining firm and stable conditions during proofrolling.
- 8. To reduce the potential for the introduction of moisture into the compacted and completed overall pavement section, which can contribute to degradation of the lime treated soil layer, proper drainage of the pavement section, shoulders and adjacent infield areas is essential. Pavement edge drains should also be considered, to create a dewatered drainage flow line that is at least 3 feet below subgrade elevation.
- Quality control testing (swell and/or residual sulfates) of the finished lime treated soil should be completed prior to compaction, to assure that the application, mixing and mellowing processes have been successful.

End of Addendum 1.

Please attach a copy of this addendum to each copy of the referenced report that you may have.

If there are any questions regarding this addendum, please feel free to contact the undersigned.

Doc No.: 2002-053.ADD1/cr

TECHNICAL REFERENCE LIST

- ESP (Earth Systems Pacific). January 21, 2020a. Geotechnical Engineering Report, Oxnard Airport, Runway and Taxiway Connector Rehabilitation/Reconstruction, Oxnard, California. Doc. No. 1901-103.SER.REV. File No. 302324-001
- ESP (Earth Systems Pacific). July 10, 2020b. Geotechnical Engineering Report, Oxnard Airport, Taxiway F Improvements, Oxnard, California. Doc. No. 2007-040.SER. File No. 302324-002
- FAA (U.S. Department of Transportation, Federal Aviation Administration). December 21, 2018. Standard Specifications for Construction of Airports. Advisory Circular 150/5370-10H.
- NAP (The National Academies Press). 2009. Recommended Practice for Stabilization of Sulfate-Rich Subgrade Soils.

APPENDIX A

Chain of Custody/Lab Test Request for Samples Sent to HDR, Inc. on 10/16/19

Laboratory Test Results for Samples Sent to HDR, Inc. on 10/16/19

CHAIN OF CUSTODY & REQUEST FOR LABORATORY TESTING

TESTING REQUESTED BY:	DATE SENT: 10/1619	
Name Fred J Potthast, GE	Phone: _805-544-3276 x-3	
Company Name Earth Systems Pacific	Fax: 805-544-1786	-10
Address 4378 Old Santa Fe Road	Email: _fred@earthsystems.com	
City San Luis Obispo State CA Zip 93401		
SEND RESULTS TO: Same as above SEND INVO Name Fred J. Potthasi, GE Address Earth Systems Pacific	ICE TO: Same as above Name Address	
City San Luis Obispo State CA Zip 93401	CityState	Zip
Email: Ired@earthsystems.com	Email:	
PROJECT INFORMATION:		
P.O. NO: 302524-002 JOB NAME: Oxnard Airport - Taxiway F Improvements Site Address 2889 West 5th Street	JOB NO: 302524-002	
Site City OxnardBoring	Site State CA	
TESTS DESIRED: General Building Materials Corrosivity Testing (resistivity+pH, soluble CalTrans Corrosivity Testing (resistivity+pH per CTM 643, soluble salts Other (Please be specific).	salts analysis e.g. chlorides, sulfates, ammo nalysis with chloride & sulfate per CTM 422	onium, nitrate) 2 & 417)

RESULTS DESIRED:

SOIL CORROSIVITY REPORT (with test results)*

Expedite turn-around (additional cost per sample). Expedited date required?

ARE THESE SAMPLES FROM A QUARANTINE AREA? YES NO

Boring ID	Depth	Type of Soil	Boring ID	Depth	Type of Soil
Boring 41	1.5 - 5	Dark Brown Clayey Sand (SC)			
Boring 55	1.5 - 5	Dark Brown Clayey Sand (SC)			
Boring 70	1.5 - 4.5	Brown Clayey Sand (SC)			
Boring 46	1 - 2	LTBr. Poorly grded Sand (SP)			

CHAIN OF CUSTODY

Signature	Print Name	Company	Date	Time
Collected/Relinquished By	Sean Hemmer	Earth Systems Pacific	10/11/19	PM
Received By:	Terry Reyes	Earth Systems Pacific	10/11/19	PM
Relinquished By:	Terry Reyes	Earth Systems Pacific	10/16/19	pm
Received By:				
Relinquished By:				
Received By Laboratory				

"IF SOIL CORROSIVITY REPORT IS REQUESTED FLEASE FILL DUT PAGE 2.

TRANSMITTAL LETTER

DATE:	November 19, 2019	

- ATTENTION: Fred J. Potthast
 - TO: Earth Systems Pacific 4378 Old Santa Fe Road San Luis Obispo, CA 93401
 - SUBJECT: Laboratory Test Data Oxnard Airport - Taxiway F Improvements Your #302524-002, HDR Lab #19-0799LAB

COMMENTS: Enclosed are the results for the subject project.

James T. Keegan, MD Corrosion and Lab Services Section Manager

431 West Baseline Road · Claremont, CA 91711 Phone: 909.962.5485 · Fax: 909.626.3316

Table 1 - Laboratory Tests on Soil Samples

Earth Systems Pacific Oxnard Airport - Taxiway F Improvements Your #302524-002, HDR Lab #19-0799LAB 19-Nov-19

Sample ID

Sample ID							
					Boring 70 @		
	10		1.5-5'	1.5-5'	1.5-4.5'	1-2'	
Resistivity		Units					
as-received		ohm-cm	па	na	na	na	
saturated		ohm-cm	na	na	na	na	
рH			na				
-			na	na	na	na	
Electrical							
Conductivity		mS/cm	3.78	1.40	0.18	0.48	
Chemical Analy	ses						
Cations							
calcium	Ca ²⁺	mg/kg	na	na	па	na	
magnesium	Mg ²⁺	mg/kg	na	na	na	na	
sodium	Na ¹⁺	mg/kg	na	na	na	na	
potassium	K ¹⁺	mg/kg	na	na	na	na	
Anions							
carbonate		mg/kg	na	na	na	na	
bicarbonate	HCO ₃ ¹	ˈmg/kg	na	na	na	na	
fluoride	F ¹⁻	mg/kg	na	na	na	na	
chloride	Cl ¹⁻	mg/kg	na	na	na	na	
sulfate	SO4 ²⁻	mg/kg	23,500	3,930	169	1,100	
phosphate	PO ₄ ³⁻	mg/kg	na	na	na	na	
Other Tests							
ammonium	NH4 ¹⁺	mg/kg	na	na	na	na	
nitrate	NO ₃ ¹	mg/kg	na	na	na	na	
sulfide	S ²⁻	qual	na	na	na		
Redox	5	mV	na	na	na	na	
NOUDA		111 V	IIa	(la	iia	na	

Resistivity per ASTM G187, Cations per ASTM D6919, Anions per ASTM D4327, and Alkalinity per APHA 2320-B. Electrical conductivity in millisiemens/cm and chemical analyses were made on a 1:5 soil-to-water extract. mg/kg = milligrams per kilogram (parts per million) of dry soil.

Redox = oxidation-reduction potential in millivolts

ND = not detected

na = not analyzed

APPENDIX B

Chain of Custody/Lab Test Request for Samples Sent to HDR, Inc. on 11/26/19

Laboratory Test Results for Samples Sent to HDR, Inc. on 11/26/19

www.hdrinc.com

CHAIN OF CUSTODY & REQUEST FOR LABORATORY TESTING

TESTING BEQUESTED BY	DATE SENT: 11/26/19
TESTING REQUESTED BY: Name Fred J. Potthast, GE	Phone: 805-544-3276 x-3
Company Name Earth Systems Pacific	Fax: _805-544-1786
Address 4378 Old Santa Fe Road	Email: fred@earthsystems.com
City San Luis Obispo State CA Zip 93401	
SEND RESULTS TO: Same as above SEND INVO Name Fred J. Potthast, GE Address Earth Systems Pacific	Name
City San Luis Obispo State CA Zip 93401	Address State Zip
Email: fred@earthsystems com	Email:
PROJECT INFORMATION: P.O. NO: 302524-002 JOB NAME: Oxnard Airport - Runway and Taxiway Improv Site Address 2889 West 5th Street	ements JOB NO: 302524-002
Site City Oxnard	Site State CA
TESTS DESIRED: General Building Materials Corrosivity Testing (resistivity+pH, soluble s CalTrans Corrosivity Testing (resistivity+pH per CTM 643, soluble salts a Other (Please be specific) Soluable sulfates only	salts analysis e.g. chlorides, sulfates, ammonium, nitrate) Inalysis with chloride & sulfate per CTM 422 & 417)
RESULTS DESIRED: SOIL CORROSIVITY REPORT (with test results)* TEST RESULTS ONLY (no report) Expedite turn-around (additional cost per sample). Exped • ARE THESE SAMPLES FROM A QUARANTINE AREA? YES NO	dited date required?

Boring ID Depth Type of Soil **Boring ID** Depth Type of Soil 1 2 - 5 Dark Brown Sandy Lean Clay (CL) 5 2 - 4 Dark Brown Silty Sand (SM) 13 2 - 4 Dark Brown Sandy Lean Clay (CL) 27 2 - 4 Dark Brown Sandy Lean Clay (CL) 45 1 - 5 Dark Brown Clayey Sand (SC) 62 2 - 5 Dark Brown Clayey Sand (SC)

CHAIN OF CUSTODY

Signature	Print Name	Company	Date	Time	
Collected/Relinquished By	R. Wagner/S. Hemmer	Earth Systems Pacific	Nov. '18 / Oct '19	PM	
Received By:	Terry Reyes	Earth Systems Pacific	'Nov. '18 / Oct '19	PM	
Relinquished By:	Terry Reyes	Earth Systems Pacific	11/26/19	PM	
Received By:					
Relinquished By:					
Received By Laboratory:					

* IF SOIL CORROSIVITY REPORT IS REQUESTED PLEASE FILL OUT PAGE 2

TRANSMITTAL LETTER

DATE:	December 10, 2019

- ATTENTION: Fred J. Potthast
 - TO:Earth Systems Pacific4378 Old Santa Fe RoadSan Luis Obispo, CA 93401
 - SUBJECT: Laboratory Test Data Oxnard Airport - Runway & Taxiway Your #302524-002, HDR Lab #19-0860LAB
- **COMMENTS:** Enclosed are the results for the subject project.

Jamés T. Keegan, MD Corrosion and Lab Services Section Manager

431 West Baseline Road · Claremont, CA 91711 Phone: 909.962.5485 · Fax: 909.626.3316

Table 1 - Laboratory Tests on Soil Samples

Earth Systems Pacific Oxnard Airport - Runway & Taxiway Improvements Your #302524-002, HDR Lab #19-0860LAB 10-Dec-19

Sample ID

MACHINE TRANSPORT		ex for we can a	B1 @ 2-5'	B5 @ 2-4'	B13 @ 2-4'	B27 @ 2-4'	B45 @ 1-5'
Resistivity		Units					
as-received		ohm-cm	na	na	na	na	na
saturated		ohm-cm	na	na	na	na	na
рН			na	na	na	na	na
Electrical							
Conductivity		mS/cm	0.56	0.32	3,09	4.71	0.73
Chemical Analy	ses						
Cations							
calcium	Ca ²⁺	mg/kg	na	na	na	na	na
magnesium	Mg ²⁺	mg/kg	na	na	na	na	na
sodium	Na ¹⁺	mg/kg	na	na	na	na	na
potassium	K ¹⁺	mg/kg	na	na	na	na	na
Anions							
carbonate	CO32-	mg/kg	na	na	na	na	na
bicarbonate		ˈmg/kg	na	na	na	na	na
fluoride	F ¹⁻	mg/kg	na	na	na	na	na
chloride	CI ¹⁻	mg/kg	na	na	na	na	na
sulfate	SO4 ²⁻	mg/kg	1,200	740	11,400	20,200	1,960
phosphate	PO₄ ^{3₋}	mg/kg	na	na	na	na	na
Other Tests							
ammonium	NH4 ¹⁺	mg/kg	na	na	na	na	na
nitrate	NO3 ¹⁻	mg/kg	na	na	na	na	na
sulfide	S ²⁻	qual	na	na	na	na	na
Redox		mV	na	na	na	na	na

Sulfate per ASTM D4327.

Electrical conductivity in millisiemens/cm and chemical analyses were made on a 1:5 soil-to-water extract.

mg/kg = milligrams per kilogram (parts per million) of dry soil.

Redox = oxidation-reduction potential in millivolts

ND = not detected

na = not analyzed

Table 1 - Laboratory Tests on Soil Samples

Earth Systems Pacific Oxnard Airport - Runway & Taxiway Improvements Your #302524-002, HDR Lab #19-0860LAB 10-Dec-19

Sample ID

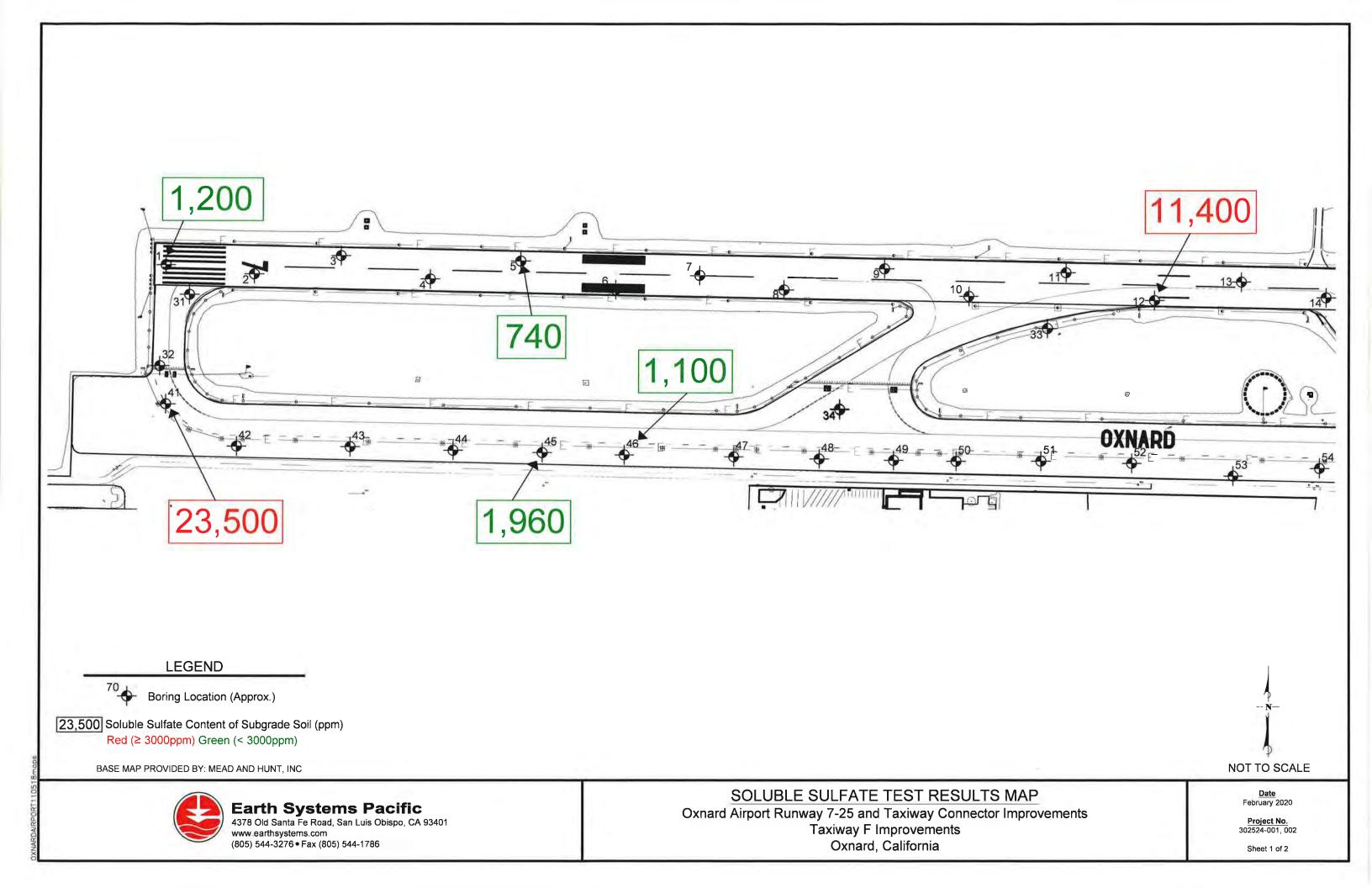
			B62 @ 2-5	
	70 VI 2 1		Restry 1	
Resistivity		Units		
as-received saturated		ohm-cm	na	
		ohm-cm	na	
рН			na	
Electrical				
Conductivity		mS/cm	0.59	
Chemical Analy	EAE			
Cations	363			
calcium	Ca ²⁺	mg/kg		
magnesium			na	
sodium	Na ¹⁺	mg/kg	na	
	Na K ¹⁺	mg/kg	na	
potassium	ĸ	mg/kg	na	
Anions carbonate	CO 2-	mg/kg		
bicarbonate			na	
			na	
fluoride	F ¹⁻	mg/kg	na	
chloride	Cl ¹⁻	mg/kg	na	
sulfate	SO4 ²⁻		1,510	
phosphate	PO4 ³⁻	mg/kg	na	
Other Tests				
ammonium	${\rm NH_4}^{1+}$	mg/kg	na	
nitrate	NO3 ¹⁻	mg/kg	na	
sulfide	S ²⁻	qual	na	
Redox		mV	na	
in the second second		Service States	110	

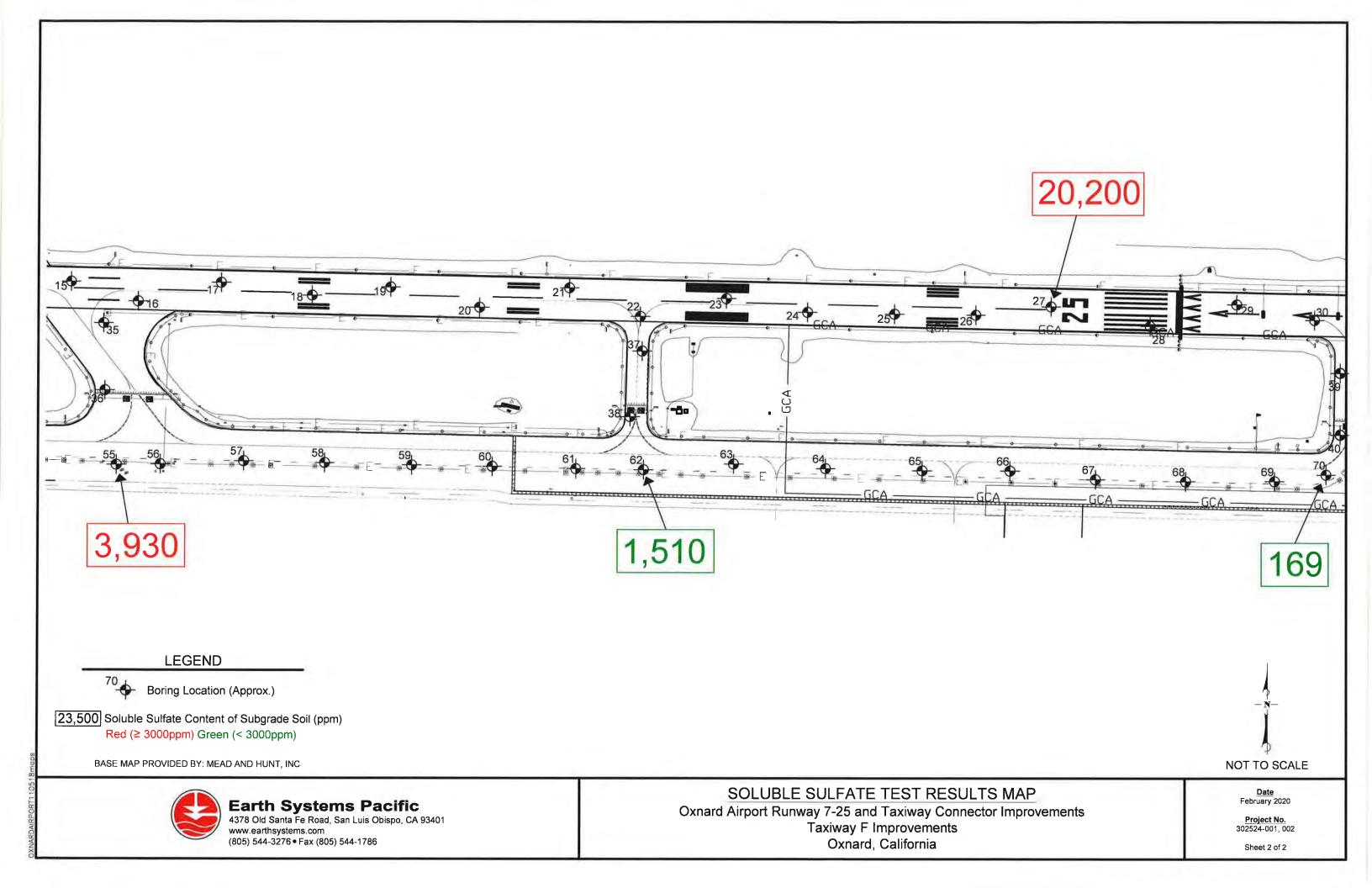
Sulfate per ASTM D4327.

Electrical conductivity in millisiemens/cm and chemical analyses were made on a 1:5 soil-to-water extract.

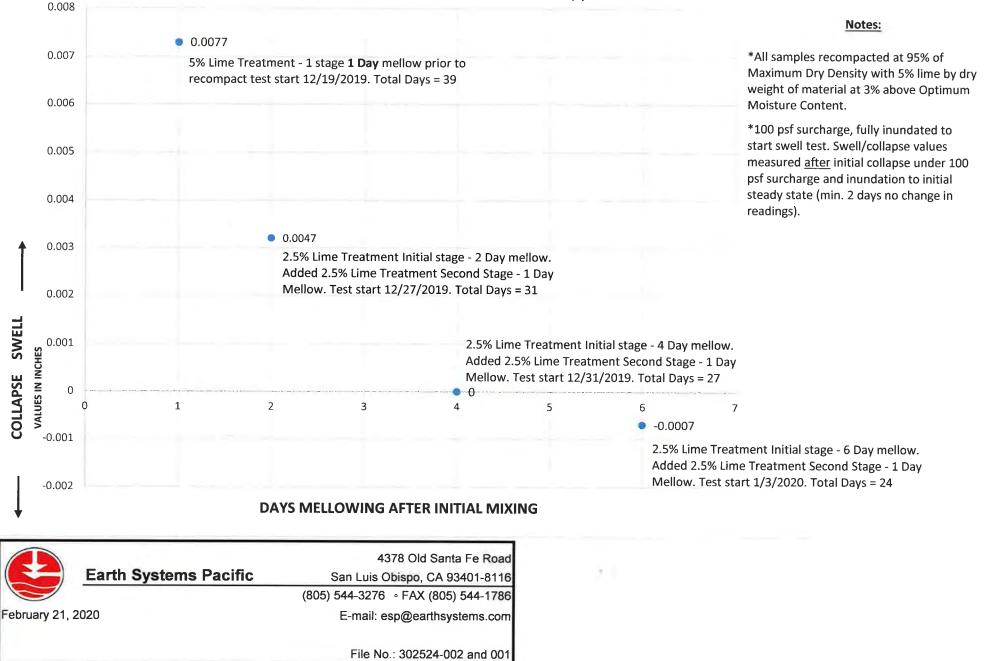
mg/kg = milligrams per kilogram (parts per million) of dry soil.

Redox = oxidation-reduction potential in millivolts


ND = not detected


na = not analyzed

APPENDIX C


Soluble Sulfate Test Results Map

Summary Graph of Swell Test Data

Oxnard Airport Taxiway F Improvements Summary of Swell Test Data on Lime Treated Samples as of 1/27/2020 Sample ID: Boring 41 @ 1.5 - 5.0 ft. Sulfate Content: 23,500 ppm

APPENDIX D

Chain of Custody/Lab Test Request for Samples Sent to HDR, Inc. on 1/16/2020

Laboratory Test Results for Samples Sent to HDR, Inc. on 1/16/2020

www.hdrinc.com

CHAIN OF CUSTODY & REQUEST FOR LABORATORY TESTING

TESTING REQUESTED BY:	DATE SENT: 1/16/20
Name Fred J Potthast, GE	Phone: 805-544-3276 x-3
Company Name Earth Systems Pacific	Fax: 805-544-1786
Address 4378 Old Santa Fe Road	Email: fred@earthsystems.com
City San Luis Obispo State CA Zip 93401	
SEND RESULTS TO: Same as above SEND INV Name Fred J. Potthast, GE	OICE TO: ✓Same as above
Address Earth Systems Pacific	Address
City San Luis Obispo State CA Zip 93401	CityStateZip
Email: Ired@earthsystems.com	Email:
PROJECT INFORMATION:	
P.O. NO: 302524-002 JOB NAME: Oxnard Airport - Runway and Taxiway Impi	rovements JOB NO: 302524-002
Site Address 2889 West 5th Street	
Site City Oxnard	Site State CA
TESTS DESIRED:	
General Building Materials Corrosivity Testing (resistivity+pH, soluble	e salts analysis e.g. chlorides, sulfates, ammonium, nitrate)
CalTrans Corrosivity Testing (resistivity+pH per CTM 643, soluble salts	s analysis with chloride & sulfate per CTM 422 & 417)
Other (Please be specific) Soluable sulfates only - per my phone call 1/16/20 at 0830 will	h James Keegan

RESULTS DESIRED:

SOIL CORROSIVITY REPORT (with test results)*

Expedite turn-around (additional cost per sample). Expedited date required?

ARE THESE SAMPLES FROM A QUARANTINE AREA? YES NOV

Boring ID Depth		Type of Soil	Boring ID	Depth	Type of Soil	
41	1- 5	DkBrn Clayey Sand (SC)	This sample has been	lime treated	at 5% by dry	
			weight in 2 stages - 2.5%	mellow for	6 days, then	
			another 2.5 %. Total	mellowing	time as of 1/16/20	
			is 13 days			

CHAIN OF CUSTODY

Signature	Print Name	Print Name Company		Time	
Collected/Relinquished By	R. Wagner/S. Hemmer	Earth Systems Pacific	Nov. '18 / Oct '19	PM	
Received By:	Terry Reyes	Earth Systems Pacific	Nov. '18 / Oct '19	PM	
Relinquished By:	Terry Reyes	Earth Systems Pacific	1/16/20	AM	
Received By:					
Relinquished By:					
Received By Laboratory:				_	

"IF SOIL CORROSIVITY REPORT IS REQUESTED PLEASE FILL OUT PAGE 2

TRANSMITTAL LETTER

DATE: January 27, 2020	DATE:	January 27,	2020
------------------------	-------	-------------	------

ATTENTION: Fred J. Potthast

- TO: Earth Systems Pacific 4378 Old Santa Fe Road San Luis Obispo, CA 93401
- SUBJECT: Laboratory Test Data Oxnard Airport - Runway and Taxiway Your #302524-002, HDR Lab #20-0032LAB

COMMENTS: Enclosed are the results for the subject project.

James T. Keegan, MD Corrosion and Lab Services Section Manager

431 West Baseline Road · Claremont, CA 91711 Phone: 909.962.5485 · Fax: 909.626.3316

Table 1 - Laboratory Tests on Soil Samples

Earth Systems Pacific Oxnard Airport - Runway and Taxiway Improvements Your #302524-002, HDR Lab #20-0032LAB 27-Jan-20

Sample ID			41 @ 1-5 DkBrn Clayey Sand (SC)	
Resistivity		Units		
as-received saturated		ohm-cm ohm-cm	na na	
pН			12.5	
Electrical				
Conductivity		mS/cm	8.30	
Chemical Analy	ses			
Cations				
calcium	Ca ²⁺	mg/kg	4,620	
magnesium	Mg ²⁺	mg/kg	23	
sodium	Na ¹⁺	mg/kg	91	
potassium	K ¹⁺	mg/kg	38	
Anions				
hydroxide	OH ¹⁻	mg/kg	3,350	11
carbonate	CO32-	mg/kg	282	
bicarbonate		`mg/kg	ND	
fluoride	F ¹⁻	mg/kg	95	
chloride	Cl ¹⁻	mg/kg	29	
sulfate	SO4 ²⁻		677	
phosphate	PO4 ³⁻	mg/kg	ND	
Other Tests	4.1			
ammonium	NH4 ¹⁺		28	
nitrate	NO ₃ ¹⁻	mg/kg	103	
sulfide	S ^{2₋}	qual	na	
Redox		mV	na	

Resistivity per ASTM G187, Cations per ASTM D6919, Anions per ASTM D4327, and Alkalinity per APHA 2320-B. Electrical conductivity in millisiemens/cm and chemical analyses were made on a 1:5 soil-to-water extract.

mg/kg = milligrams per kilogram (parts per million) of dry soil. Redox = oxidation-reduction potential in millivolts

ND = not detected

na = not analyzed

Appendix E - Aircraft Fleet Mix

Mead & Hunt X:\3138400\181115.02\TECH\Design\Reports\Engineering\100%\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report-100% compiled wAppdx.docx

Oxnard Airport, Ventura County Runway 7-25 Rehabilitation Aircraft Fleet Mix

No,	Aircraft	MTOW (lbs)	2017	2018	2020	2023	2028	2038	2040
1	Gulfstream G650	99,600	165	167	500	517	550	611	624
2	Embraer 175	83,026	0		2,190	2,393	2,774	3,728	3,955
3	Falcon 900LX	49,000	1,025	1,037	1,062	1,098	1,168	1,298	1,324
4	Challenger 300/600/604	48,200	1,414	1,431	1,464	1,515	1,611	1,790	1,826
5	Gulfstream 200/280	39,600	495	501	513	530	564	627	639
6	Hawker 800	28,120	471	477	488	505	537	597	609
7	Citation V/VII	23,200	660	668	683	707	752	836	852
8	Citation XLS	22,000	825	835	854	884	940	1,044	1,065
9	Learjet 40	21,500	1,108	1,121	1,147	1,187	1,262	1,402	1,430
10	Phenom 300	18,000	577	584	598	619	658	731	746
11	Beech 1900	17,120	848	858	879	909	967	1,074	1,096
12	Citation CJ3/CJ4	17,110	507	513	525	543	872	1,545	1,680
13	King Air 200/350	15,100	5,576	5,685	5,903	6,231	6,885	8,149	8,401
14	Swearingen Merlin	13,300	5,717	5,828	6,050	6,382	7,046	8,328	8,584
15	Citation CJ1/CJ2	12,375	1,991	2,111	2,351	2,710	3,447	4,028	4,144
16	King Air 90/100	11,800	5,357	5,333	5,285	5,213	4,782	4,400	4,324
17	Phenom 100	10,600	943	954	976	1,010	1,074	1,194	1,217
18	Pilatus PC12	8,818	14,713	14,896	15,264	15,816	16,977	19,111	19,538
19	Socata TBM	6,580	25,909	26,101	26,487	27,065	27,770	29,637	30,011
			68,300	69,100	73,219	75,834	80,636	90,131	92,066

Appendix E

Appendix F - FAARFIELD Airport Pavement Design Reports

Appendix F

FAARFIELD

FAARFIELD v 1.42 - Airport Pavement Design

RUNWAY REHABILITATION OPTION	l,
RUNWAY REHABILITATION OPTION CBR = 12	

Section REHAB-mod-fm in Job OXR-PAV-DESIGN.

Working directory is X:\3138400\181115.01\TECH\Design\Pavement Design\FAARFIELD\

The section does not have a design life of 20 years. This constitutes a deviation from standards and requires FAA approval.

The structure is New Flexible. Asphalt CDF was not computed.

Design Life = 10 years.

A design for this section was completed on 09/24/19 at 09:37:59.

Compaction requirements for this section were computed on 09/24/19 at 09:38:02.

Pavement Structure Information by Layer, Top First

No.	Туре	Thickness in	Modulus psi	Poisson's Ratio	Strength R,psi
1	P-401/ P-403 HMA Surface	4.00	200,000	0.35	0
2	P-209 Cr Ag	19.01	76,754	0.35	0
3	User Defined	14.00	18,000	0.35	0
4	Subgrade	0.00	1,500	0.35	0

Total thickness to the top of the subgrade = 37.01 in

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	Gulfstream-G-V	99,600	250	1.25
2	Falcon-900	49,000	531	1.25
3	Challenger-CL-604	48,200	732	1.25
4	Gulfstream-G-II	39,600	256	1.25
5	Hawker-800XP	28,120	244	1.25
6	Citation-VI/VII	23,200	342	1.25
7	Learjet-55	21,500	574	1.25
8	Citation-V	20,500	427	1.25
9	Citation-V	18,000	299	1.25
10	SuperKingAir-300	17,120	439	1.25
11	Citation-V	17,110	262	9.55
12	SuperKingAir-350	15,100	2,952	2.10
13	SuperKingAir-300	13,300	3,025	2.10
14	Citation-550B	12,375	1,175	4.60
15	KingAir-B-100	11,800	2,643	-0.95
16	Citation-525	10,600	488	1.25
17	GrnCaravan-CE-208B	8,818	7,632	1.40
18	Baron-E-55	6,580	13,243	0.65
19	EMB-175 STD	83,026	1,095	3.00

Subgrade CDF

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	Gulfstream-G-V	0.90	0.90	1.41
2	Falcon-900	0.00	0.00	1.51
3	Challenger-CL-604	0.00	0.00	1.44
4	Gulfstream-G-II	0.00	0.00	1.45
5	Hawker-800XP	0.00	0.00	1.55
6	Citation-VI/VII	0.00	0.00	1.65
7	Learjet-55	0.00	0.00	1.59
8	Citation-V	0.00	0.00	1.91
9	Citation-V	0.00	0.00	1.91
10	SuperKingAir-300	0.00	0.00	1.61
11	Citation-V	0.00	0.00	1.91
12	SuperKingAir-350	0.00	0.00	1.60
13	SuperKingAir-300	0.00	0.00	1.61
14	Citation-550B	0.00	0.00	1.90
15	KingAir-B-100	0.00	0.00	1.59
16	Citation-525	0.00	0.00	1.93
17	GrnCaravan-CE-208B	0.00	0.00	1.90
18	Baron-E-55	0.00	0.00	1.90
19	EMB-175 STD	0.10	0.11	1.29

Subgrade Compaction Requirements

NonCohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
100	0 - 19		Gulfstream-G-V
95	19 - 26		Gulfstream-G-V
90	26 - 33		Gulfstream-G-V
85	33 - 44	0 - 7	Gulfstream-G-V

Cohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
95	0 - 18		Gulfstream-G-V
90	18 - 24		Gulfstream-G-V
85	24 - 28		Gulfstream-G-V
80	28 - 33		Gulfstream-G-V

Subgrade Compaction Notes:

1.Noncohesive soils, for the purpose of determining compaction control, are those with a plasticity index (PI) less than 3.

2. Tabulated values indicate depth ranges within which densities should equal or exceed the

indicated percentage of the maximum dry density as specified in item P-152.

3.Maximum dry density is determined using ASTM Method D 698.

4. The subgrade in cut areas should have natural densities shown or should (a) be compacted from the surface to achieve the required densities, (b) be removed and replaced at the densities shown, or (c) when economics and grades permit, be covered with sufficient select or subbase material so

that the uncompacted subgrade is at a depth where the in-place densities are satisfactory. 5.For swelling soils refer to AC 150/5320-6F paragraph 3.10.

User is responsible for checking frost protection requirements.

	OXR-PAV-DESIGN Layer Material	REHAB-mod-fm Thickness (in)	Des. Life = 10 Modulus or R (psi)
	P-401/P-403 HMA Surface	4.00	200,000
->	P-209 Cr Ag	19.01	76,754
	Non-Stan	dard Structure and	d Life
	User Defined	14.00	18.000
	Subgrade Sub CDF = 1.00; S	CBR = 1.0 Str Life (SG) = 10.0 yrs;	1,500 t = 37.01 in

FAARFIELD

FAARFIELD v 1.42 - Airport Pavement Design

RUNWAY	REHABILITATION OPTION,
CBR = 27	

Section REHAB-mod-fm in Job OXR-PAV-DESIGN.

Working directory is X:\3138400\181115.01\TECH\Design\Pavement Design\FAARFIELD\

The section does not have a design life of 20 years. This constitutes a deviation from standards and requires FAA approval.

The structure is New Flexible. Asphalt CDF was not computed.

Design Life = 10 years.

A design for this section was completed on 09/24/19 at 09:38:29.

Compaction requirements for this section were computed on 09/24/19 at 09:38:33.

Pavement Structure Information by Layer, Top First

No.	Туре	Thickness in	Modulus psi	Poisson's Ratio	Strength R,psi
1	P-401/ P-403 HMA Surface	4.00	200,000	0.35	0
2	P-209 Cr Ag	13.61	100,425	0.35	0
3	User Defined	14.00	40,500	0.35	0
4	Subgrade	0.00	1,500	0.35	0

Total thickness to the top of the subgrade = 31.61 in

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	Gulfstream-G-V	99,600	250	1.25
2	Falcon-900	49,000	531	1.25
3	Challenger-CL-604	48,200	732	1.25
4	Gulfstream-G-II	39,600	256	1.25
5	Hawker-800XP	28,120	244	1.25
6	Citation-VI/VII	23,200	342	1.25
7	Learjet-55	21,500	574	1.25
8	Citation-V	20,500	427	1.25
9	Citation-V	18,000	299	1.25
10	SuperKingAir-300	17,120	439	1.25
11	Citation-V	17,110	262	9.55
12	SuperKingAir-350	15,100	2,952	2.10
13	SuperKingAir-300	13,300	3,025	2.10
14	Citation-550B	12,375	1,175	4.60
15	KingAir-B-100	11,800	2,643	-0.95
16	Citation-525	10,600	488	1.25
17	GrnCaravan-CE-208B	8,818	7,632	1.40
18	Baron-E-55	6,580	13,243	0.65
19	EMB-175 STD	83,026	1,095	3.00

Additional Airplane Information

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	Gulfstream-G-V	0.92	0.92	1.50
2	Falcon-900	0.00	0.00	1.62
3	Challenger-CL-604	0.00	0.00	1.54
4	Gulfstream-G-II	0.00	0.00	1.56
5	Hawker-800XP	0.00	0.00	1.67
6	Citation-VI/VII	0.00	0.00	1.81
7	Learjet-55	0.00	0.00	1.73
8	Citation-V	0.00	0.00	2.13
9	Citation-V	0.00	0.00	2.13
10	SuperKingAir-300	0.00	0.00	1.75
11	Citation-V	0.00	0.00	2.13
12	SuperKingAir-350	0.00	0.00	1.74
13	SuperKingAir-300	0.00	0.00	1.75
14	Citation-550B	0.00	0.00	2.13
15	KingAir-B-100	0.00	0.00	1.72
16	Citation-525	0.00	0.00	2.16
17	GrnCaravan-CE-208B	0.00	0.00	2.13
18	Baron-E-55	0.00	0.00	2.14
19	EMB-175 STD	0.08	0.08	1.36

Subgrade Compaction Requirements

NonCohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
100	0 - 19		Gulfstream-G-V
95	19 - 24		Gulfstream-G-V
90	24 - 28		Gulfstream-G-V
85	28 - 40	0 - 9	Gulfstream-G-V

Cohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
95	0 - 18		Gulfstream-G-V
90	18 - 22		Gulfstream-G-V
85	22 - 25		Gulfstream-G-V
80	25 - 28		Gulfstream-G-V

Subgrade Compaction Notes:

1.Noncohesive soils, for the purpose of determining compaction control, are those with a plasticity index (PI) less than 3.

2. Tabulated values indicate depth ranges within which densities should equal or exceed the

indicated percentage of the maximum dry density as specified in item P-152.

3.Maximum dry density is determined using ASTM Method D 698.

4. The subgrade in cut areas should have natural densities shown or should (a) be compacted from the surface to achieve the required densities, (b) be removed and replaced at the densities shown, or (c) when economics and grades permit, be covered with sufficient select or subbase material so

that the uncompacted subgrade is at a depth where the in-place densities are satisfactory. 5. For swelling soils refer to AC 150/5320-6F paragraph 3.10.

User is responsible for checking frost protection requirements.

OXR-PAV-DESIGN Layer Material	REHAB-mod- Thickness (in)	fm Des. Life = 10 Modulus or R (psi)
P-401/P-403 HMA Surface	4.00	200,000
P-209 Cr Ag [13.61	100,425
User Defined [14.00	40,500
Non-Stan	*****	
Sub CDE = 1.00	CBR = 1.0	1,500
	Layer Material P-401/P-403 HMA Surface P-209 Cr Ag	Material (in) P-401/P-403 HMA Surface 4.00 P-209 Cr Ag 13.61 User Defined 14.00 Non-Standard Structure

FAARFIELD

FAARFIELD v 1.42 - Airport Pavement Design

RUNWAY	REHABILITATION OPTION,
CBR = 50	

1

Section REHAB-mod-fm in Job OXR-PAV-DESIGN.

Working directory is X:\3138400\181115.01\TECH\Design\Pavement Design\FAARFIELD\

The section does not have a design life of 20 years. This constitutes a deviation from standards and requires FAA approval.

The structure is New Flexible. Asphalt CDF was not computed.

Design Life = 10 years.

A design for this section was completed on 09/24/19 at 09:36:51.

Compaction requirements for this section were computed on 09/24/19 at 09:37:22.

Pavement Structure Information by Layer, Top First

No.	Туре	Thickness in	Modulus psi	Poisson's Ratio	Strength R,psi
1	P-401/ P-403 HMA Surface	4.00	200,000	0.35	0
2	P-209 Cr Ag	12.10	110,745	0.35	0
3	User Defined	14.00	50,000	0.35	0
4	Subgrade	0.00	1,500	0.35	0

Total thickness to the top of the subgrade = 30.10 in

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	Gulfstream-G-V	99,600	250	1.25
2	Falcon-900	49,000	531	1.25
3	Challenger-CL-604	48,200	732	1.25
4	Gulfstream-G-II	39,600	256	1.25
5	Hawker-800XP	28,120	244	1.25
6	Citation-VI/VII	23,200	342	1.25
7	Learjet-55	21,500	574	1.25
8	Citation-V	20,500	427	1.25
9	Citation-V	18,000	299	1.25
10	SuperKingAir-300	17,120	439	1.25
11	Citation-V	17,110	262	9.55
12	SuperKingAir-350	15,100	2,952	2.10
13	SuperKingAir-300	13,300	3,025	2.10
14	Citation-550B	12,375	1,175	4.60
15	KingAir-B-100	11,800	2,643	-0.95
16	Citation-525	10,600	488	1.25
17	GrnCaravan-CE-208B	8,818	7,632	1.40
18	Baron-E-55	6,580	13,243	0.65
19	EMB-175 STD	83,026	1,095	3.00

Additional Airplane Information

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	Gulfstream-G-V	0.92	0.92	1.52
2	Falcon-900	0.00	0.00	1.66
3	Challenger-CL-604	0.00	0.00	1.57
4	Gulfstream-G-II	0.00	0.00	1.59
5	Hawker-800XP	0.00	0.00	1.71
6	Citation-VI/VII	0.00	0.00	1.86
7	Learjet-55	0.00	0.00	1.78
8	Citation-V	0.00	0.00	2.21
9	Citation-V	0.00	0.00	2.21
10	SuperKingAir-300	0.00	0.00	1.79
11	Citation-V	0.00	0.00	2.21
12	SuperKingAir-350	0.00	0.00	1.79
13	SuperKingAir-300	0.00	0.00	1.79
14	Citation-550B	0.00	0.00	2.21
15	KingAir-B-100	0.00	0.00	1.76
16	Citation-525	0.00	0.00	2.24
17	GrnCaravan-CE-208B	0.00	0.00	2.21
18	Baron-E-55	0.00	0.00	2.22
19	EMB-175 STD	0.07	0.08	1.38

Subgrade Compaction Requirements

NonCohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
100	0 - 19		Gulfstream-G-V
95	19 - 24		Gulfstream-G-V
90	24 - 28		Gulfstream-G-V
85	28 - 40	0 - 10	Gulfstream-G-V

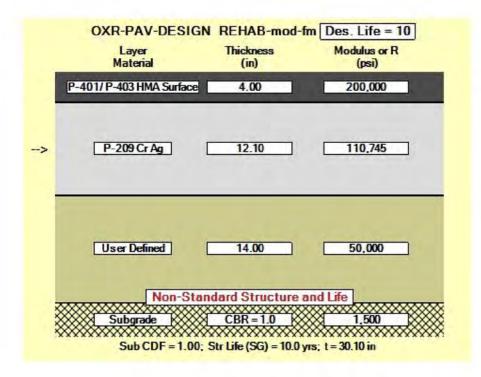
Cohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
95	0 - 18		Gulfstream-G-V
90	18 - 22		Gulfstream-G-V
85	22 - 25		Gulfstream-G-V
80	25 - 27		Gulfstream-G-V

Subgrade Compaction Notes:

1.Noncohesive soils, for the purpose of determining compaction control, are those with a plasticity index (PI) less than 3.

2. Tabulated values indicate depth ranges within which densities should equal or exceed the


indicated percentage of the maximum dry density as specified in item P-152.

3.Maximum dry density is determined using ASTM Method D 698.

4. The subgrade in cut areas should have natural densities shown or should (a) be compacted from the surface to achieve the required densities, (b) be removed and replaced at the densities shown, or (c) when economics and grades permit, be covered with sufficient select or subbase material so

that the uncompacted subgrade is at a depth where the in-place densities are satisfactory. 5.For swelling soils refer to AC 150/5320-6F paragraph 3.10.

User is responsible for checking frost protection requirements.

FAARFIELD

FAARFIELD v 1.42 - Airport Pavement Design

RUNWAY RECONSTRUCTION OPTION, CBR = 5

Section RECON-NOLIME in Job OXR-PAV-DESIGN.

Working directory is X:\3138400\181115.01\TECH\Design\Pavement Design\FAARFIELD\

The structure is New Flexible. Asphalt CDF was not computed.

Design Life = 20 years.

A design for this section was completed on 09/24/19 at 09:29:12.

Compaction requirements for this section were computed on 09/24/19 at 09:29:43.

Pavement Structure Information by Layer, Top First

No.	Туре	Thickness in	Modulus psi	Poisson's Ratio	Strength R,psi
1	P-401/ P-403 HMA Surface	4.00	200,000	0.35	0
2	P-209 Cr Ag	20.29	51,754	0.35	0
3	Subgrade	0.00	7,500	0.35	0

Total thickness to the top of the subgrade = 24.29 in

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	Gulfstream-G-V	99,600	250	1.25
2	Falcon-900	49,000	531	1.25
3	Challenger-CL-604	48,200	732	1.25
4	Gulfstream-G-II	39,600	256	1.25
5	Hawker-800XP	28,120	244	1.25
6	Citation-VI/VII	23,200	342	1.25
7	Learjet-55	21,500	574	1.25
8	Citation-V	20,500	427	1.25
9	Citation-V	18,000	299	1.25
10	SuperKingAir-300	17,120	439	1.25
11	Citation-V	17,110	262	9.55
12	SuperKingAir-350	15,100	2,952	2.10
13	SuperKingAir-300	13,300	3,025	2.10
14	Citation-550B	12,375	1,175	4.60
15	KingAir-B-100	11,800	2,643	-0.95
16	Citation-525	10,600	488	1.25
17	GrnCaravan-CE-208B	8,818	7,632	1.40
18	Baron-E-55	6,580	13,243	0.65
19	EMB-175 STD	83,026	1,095	3.00

RUNWAY RECONSTRUCTION OPTION, CBR = 5

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	Gulfstream-G-V	1.00	1.00	1.65
2	Falcon-900	0.00	0.00	1.82
3	Challenger-CL-604	0.00	0.00	1.71
4	Gulfstream-G-II	0.00	0.00	1.73
5	Hawker-800XP	0.00	0.00	1.90
6	Citation-VI/VII	0.00	0.00	2.09
7	Learjet-55	0.00	0.00	1.99
8	Citation-V	0.00	0.00	2.58
9	Citation-V	0.00	0.00	2.58
10	SuperKingAir-300	0.00	0.00	2.00
11	Citation-V	0.00	0.00	2.58
12	SuperKingAir-350	0.00	0.00	1.99
13	SuperKingAir-300	0.00	0.00	2.00
14	Citation-550B	0.00	0.00	2.58
15	KingAir-B-100	0.00	0.00	1.96
16	Citation-525	0.00	0.00	2.62
17	GrnCaravan-CE-208B	0.00	0.00	2.58
18	Baron-E-55	0.00	0.00	2.60
19	EMB-175 STD	0.00	0.00	1.47

Subgrade Compaction Requirements

NonCohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
100	0 - 20		Gulfstream-G-V
95	20 - 37	0 - 13	Gulfstream-G-V
90	37 - 59	13 - 35	Gulfstream-G-V
85	59 - 87	35 - 63	Gulfstream-G-V

Cohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
95	0 - 19		Gulfstream-G-V
90	19 - 30	0 - 5	Gulfstream-G-V
85	30 - 43	5 - 19	Gulfstream-G-V
80	43 - 58	19 - 34	Gulfstream-G-V

Subgrade Compaction Notes:

1.Noncohesive soils, for the purpose of determining compaction control, are those with a plasticity index (PI) less than 3.

2.Tabulated values indicate depth ranges within which densities should equal or exceed the indicated percentage of the maximum dry density as specified in item P-152.

3.Maximum dry density is determined using ASTM Method D 698.

4. The subgrade in cut areas should have natural densities shown or should (a) be compacted from the surface to achieve the required densities, (b) be removed and replaced at the densities shown, or (c) when economics and grades permit, be covered with sufficient select or subbase material so that the uncompacted subgrade is at a depth where the in-place densities are satisfactory.

5.For swelling soils refer to AC 150/5320-6F paragraph 3.10.

User is responsible for checking frost protection requirements.

	OXR-PAV-DESIGN	RECON-NOLIME	Des. Life = 20
	Layer	Thickness	Modulus or R
	Material	(in)	(psi)
	P-401/P-403 HMA Surface	4.00	200,000
->	P-209 Cr Ag [20.29	51,754
	Subgrade	CBR = 5.0	7.500
	Sub CDF = 1.00;	Str Life (SG) = 20.0 yrs;	t = 24.29 in

FAARFIELD

FAARFIELD v 1.42 - Airport Pavement Design

RUNWAY RECONSTRUCTION OPTION, CBR = 8

Section RECON-NOLIME in Job OXR-PAV-DESIGN.

Working directory is X:\3138400\181115.01\TECH\Design\Pavement Design\FAARFIELD\

The structure is New Flexible. Asphalt CDF was not computed.

Design Life = 20 years.

A design for this section was completed on 09/24/19 at 09:30:03.

Compaction requirements for this section were computed on 09/24/19 at 09:30:06.

Pavement Structure Information by Layer, Top First

No.	Туре	Thickness in	Modulus psi	Poisson's Ratio	Strength R,psi
1	P-401/ P-403 HMA Surface	4.00	200,000	0.35	0
2	P-209 Cr Ag	16.07	48,362	0.35	0
3	Subgrade	0.00	12,000	0.35	0

Total thickness to the top of the subgrade = 20.07 in

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	Gulfstream-G-V	99,600	250	1.25
2	Falcon-900	49,000	531	1.25
3	Challenger-CL-604	48,200	732	1.25
4	Gulfstream-G-II	39,600	256	1.25
5	Hawker-800XP	28,120	244	1.25
6	Citation-VI/VII	23,200	342	1.25
7	Learjet-55	21,500	574	1.25
8	Citation-V	20,500	427	1.25
9	Citation-V	18,000	299	1.25
10	SuperKingAir-300	17,120	439	1.25
11	Citation-V	17,110	262	9.55
12	SuperKingAir-350	15,100	2,952	2.10
13	SuperKingAir-300	13,300	3,025	2.10
14	Citation-550B	12,375	1,175	4.60
15	KingAir-B-100	11,800	2,643	-0.95
16	Citation-525	10,600	488	1.25
17	GrnCaravan-CE-208B	8,818	7,632	1.40
18	Baron-E-55	6,580	13,243	0.65
19	EMB-175 STD	83,026	1,095	3.00

RUNWAY RECONSTRUCTION OPTION. CBR = 8

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	Gulfstream-G-V	1.00	1.00	1.76
2	Falcon-900	0.00	0.00	1.98
3	Challenger-CL-604	0.00	0.00	1.84
4	Gulfstream-G-II	0.00	0.00	1.87
5	Hawker-800XP	0.00	0.00	2.07
6	Citation-VI/VII	0.00	0.00	2.31
7	Learjet-55	0.00	0.00	2.19
8	Citation-V	0.00	0.00	2.95
9	Citation-V	0.00	0.00	2.95
10	SuperKingAir-300	0.00	0.00	2.20
11	Citation-V	0.00	0.00	2.95
12	SuperKingAir-350	0.00	0.00	2.19
13	SuperKingAir-300	0.00	0.00	2.20
14	Citation-550B	0.00	0.00	2.95
15	KingAir-B-100	0.00	0.00	2.15
16	Citation-525	0.00	0.00	3.01
17	GrnCaravan-CE-208B	0.00	0.00	2.95
18	Baron-E-55	0.00	0.00	2.99
19	EMB-175 STD	0.00	0.00	1.54

Subgrade Compaction Requirements

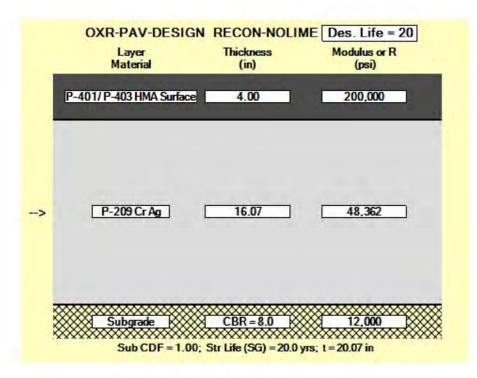
NonCohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
100	0 - 24	0 - 4	Gulfstream-G-V
95	24 - 44	4 - 24	Gulfstream-G-V
90	44 - 67	24 - 47	Gulfstream-G-V
85	67 - 95	47 - 75	Gulfstream-G-V

Cohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
95	0 - 22	0 - 2	Gulfstream-G-V
90	22 - 36	2 - 16	Gulfstream-G-V
85	36 - 51	16 - 30	Gulfstream-G-V
80	51 - 66	30 - 46	Gulfstream-G-V

Subgrade Compaction Notes:


1.Noncohesive soils, for the purpose of determining compaction control, are those with a plasticity index (PI) less than 3.

2.Tabulated values indicate depth ranges within which densities should equal or exceed the indicated percentage of the maximum dry density as specified in item P-152.

3.Maximum dry density is determined using ASTM Method D 698.

4. The subgrade in cut areas should have natural densities shown or should (a) be compacted from the surface to achieve the required densities, (b) be removed and replaced at the densities shown, or (c) when economics and grades permit, be covered with sufficient select or subbase material so that the uncompacted subgrade is at a depth where the in-place densities are satisfactory.

5.For swelling soils refer to AC 150/5320-6F paragraph 3.10.

FAARFIELD

FAARFIELD v 1.42 - Airport Pavement Design

Section Mod-fleet in Job OXR-PAV-DESIGN.

Working directory is X:\3138400\181115.01\TECH\Design\Pavement Design\FAARFIELD\

The structure is New Flexible. Asphalt CDF was not computed.

Design Life = 20 years.

A design for this section was completed on 09/24/19 at 09:33:02.

Compaction requirements for this section were computed on 09/24/19 at 09:33:05.

Pavement Structure Information by Layer, Top First

No.	Туре	Thickness in	Modulus psi	Poisson's Ratio	Strength R,psi
1	P-401/ P-403 HMA Surface	4.00	200,000	0.35	0
2	P-209 Cr Ag	11.55	138,987	0.35	0
3	User Defined	12.00	78,000	0.35	0
4	Subgrade	0.00	1,500	0.35	0

Total thickness to the top of the subgrade = 27.55 in

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	Gulfstream-G-V	99,600	250	1.25
2	Falcon-900	49,000	531	1.25
3	Challenger-CL-604	48,200	732	1.25
4	Gulfstream-G-II	39,600	256	1.25
5	Hawker-800XP	28,120	244	1.25
6	Citation-VI/VII	23,200	342	1.25
7	Learjet-55	21,500	574	1.25
8	Citation-V	20,500	427	1.25
9	Citation-V	18,000	299	1.25
10	SuperKingAir-300	17,120	439	1.25
11	Citation-V	17,110	262	9.55
12	SuperKingAir-350	15,100	2,952	2.10
13	SuperKingAir-300	13,300	3,025	2.10
14	Citation-550B	12,375	1,175	4.60
15	KingAir-B-100	11,800	2,643	-0.95
16	Citation-525	10,600	488	1.25
17	GrnCaravan-CE-208B	8,818	7,632	1.40
18	Baron-E-55	6,580	13,243	0.65
19	EMB-175 STD	83,026	1,095	3.00

	0.00	CDF	CDF Max	P/C
No.	Name	Contribution	for Airplane	Ratio
1	Gulfstream-G-V	0.98	0.98	1.57
2	Falcon-900	0.00	0.00	1.72
3	Challenger-CL-604	0.00	0.00	1.63
4	Gulfstream-G-II	0.00	0.00	1.65
5	Hawker-800XP	0.00	0.00	1.79
6	Citation-VI/VII	0.00	0.00	1.95
7	Learjet-55	0.00	0.00	1.87
8	Citation-V	0.00	0.00	2.35
9	Citation-V	0.00	0.00	2.35
10	SuperKingAir-300	0.00	0.00	1.88
11	Citation-V	0.00	0.00	2.35
12	SuperKingAir-350	0.00	0.00	1.87
13	SuperKingAir-300	0.00	0.00	1.88
14	Citation-550B	0.00	0.00	2.35
15	KingAir-B-100	0.00	0.00	1.85
16	Citation-525	0.00	0.00	2.39
17	GrnCaravan-CE-208B	0.00	0.00	2.35
18	Baron-E-55	0.00	0.00	2.37
19	EMB-175 STD	0.02	0.03	1.41

Subgrade Compaction Requirements

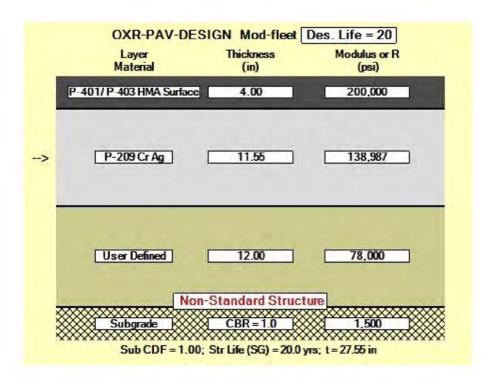
NonCohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
100	0 - 18		Gulfstream-G-V
95	18 - 23		Gulfstream-G-V
90	23 - 27		Gulfstream-G-V
85	27 - 36	0 - 9	Gulfstream-G-V

Cohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
95	0 - 17		Gulfstream-G-V
90	17 - 21		Gulfstream-G-V
85	21 - 24		Gulfstream-G-V
80	24 - 27		Gulfstream-G-V

Subgrade Compaction Notes:


1.Noncohesive soils, for the purpose of determining compaction control, are those with a plasticity index (PI) less than 3.

2.Tabulated values indicate depth ranges within which densities should equal or exceed the indicated percentage of the maximum dry density as specified in item P-152.

3.Maximum dry density is determined using ASTM Method D 698.

4. The subgrade in cut areas should have natural densities shown or should (a) be compacted from the surface to achieve the required densities, (b) be removed and replaced at the densities shown, or (c) when economics and grades permit, be covered with sufficient select or subbase material so that the uncompacted subgrade is at a depth where the in-place densities are satisfactory.

5.For swelling soils refer to AC 150/5320-6F paragraph 3.10.

FAARFIELD

FAARFIELD v 1.42 - Airport Pavement Design

RECOMMENDED OPTION

RUNWAY RECONSTRUCTION OPTION, 16-INCH LIME-TREATED SUBGRADE

Section Mod-fleet in Job OXR-PAV-DESIGN.

Working directory is X:\3138400\181115.01\TECH\Design\Pavement Design\FAARFIELD\

The structure is New Flexible. Asphalt CDF was not computed.

Design Life = 20 years.

A design for this section was completed on 09/24/19 at 09:31:17.

Compaction requirements for this section were computed on 09/24/19 at 09:31:20.

Pavement Structure Information by Layer, Top First

No.	Туре	Thickness in	Modulus psi	Poisson's Ratio	Strength R,psi
1	P-401/ P-403 HMA Surface	4.00	200,000	0.35	0
2	P-209 Cr Ag	8.23	130,525	0.35	0
3	User Defined	16.00	78,000	0.35	0
4	Subgrade	0.00	1,500	0.35	0

Total thickness to the top of the subgrade = 28.23 in

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	Gulfstream-G-V	99,600	250	1.25
2	Falcon-900	49,000	531	1.25
3	Challenger-CL-604	48,200	732	1.25
4	Gulfstream-G-II	39,600	256	1.25
5	Hawker-800XP	28,120	244	1.25
6	Citation-VI/VII	23,200	342	1.25
7	Learjet-55	21,500	574	1.25
8	Citation-V	20,500	427	1.25
9	Citation-V	18,000	299	1.25
10	SuperKingAir-300	17,120	439	1.25
11	Citation-V	17,110	262	9.55
12	SuperKingAir-350	15,100	2,952	2.10
13	SuperKingAir-300	13,300	3,025	2.10
14	Citation-550B	12,375	1,175	4.60
15	KingAir-B-100	11,800	2,643	-0.95
16	Citation-525	10,600	488	1.25
17	GrnCaravan-CE-208B	8,818	7,632	1.40
18	Baron-E-55	6,580	13,243	0.65
19	EMB-175 STD	83,026	1,095	3.00

1 005

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	Gulfstream-G-V	0.98	0.98	1.56
2	Falcon-900	0.00	0.00	1.71
3	Challenger-CL-604	0.00	0.00	1.61
4	Gulfstream-G-II	0.00	0.00	1.63
5	Hawker-800XP	0.00	0.00	1.77
6	Citation-VI/VII	0.00	0.00	1.93
7	Learjet-55	0.00	0.00	1.84
8	Citation-V	0.00	0.00	2.31
9	Citation-V	0.00	0.00	2.31
10	SuperKingAir-300	0.00	0.00	1.85
11	Citation-V	0.00	0.00	2.31
12	SuperKingAir-350	0.00	0.00	1.85
13	SuperKingAir-300	0.00	0.00	1.85
14	Citation-550B	0.00	0.00	2.31
15	KingAir-B-100	0.00	0.00	1.82
16	Citation-525	0.00	0.00	2.35
17	GrnCaravan-CE-208B	0.00	0.00	2.31
18	Baron-E-55	0.00	0.00	2.33
19	EMB-175 STD	0.02	0.02	1.40

Subgrade Compaction Requirements

NonCohesive Soil

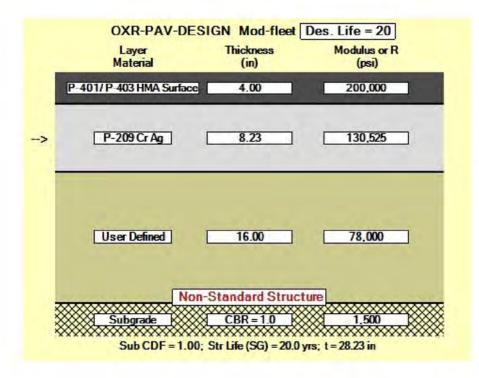
Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
100	0 - 19		Gulfstream-G-V
95	19 - 23		Gulfstream-G-V
90	23 - 27		Gulfstream-G-V
85	27 - 37	0 - 9	Gulfstream-G-V

Cohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
95	0 - 18		Gulfstream-G-V
90	18 - 22		Gulfstream-G-V
85	22 - 24		Gulfstream-G-V
80	24 - 27		Gulfstream-G-V

Subgrade Compaction Notes:

1.Noncohesive soils, for the purpose of determining compaction control, are those with a plasticity index (PI) less than 3.


2.Tabulated values indicate depth ranges within which densities should equal or exceed the indicated percentage of the maximum dry density as specified in item P-152.

3.Maximum dry density is determined using ASTM Method D 698.

4. The subgrade in cut areas should have natural densities shown or should (a) be compacted from the surface to achieve the required densities, (b) be removed and replaced at the densities shown, or (c) when economics and grades permit, be covered with sufficient select or subbase material so that the uncompacted subgrade is at a depth where the in-place densities are satisfactory.

RECOMMENDED OPTION

5.For swelling soils refer to AC 150/5320-6F paragraph 3.10.

INTENTIONALLY BLANK

FAARFIELD

FAARFIELD v 1.42 - Airport Pavement Design

Section TWYF_OVLY in Job TWY-F.

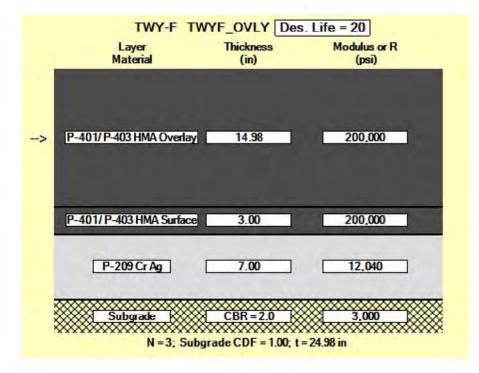
Working directory is X:\3138400\181115.02\TECH\Design\Pavement Design\FAARFIELD\

The structure is AC Overlay on Flexible. Asphalt CDF was not computed.

Design Life = 20 years.

A design for this section was completed on 06/24/20 at 10:22:37.

Pavement Structure Information by Layer, Top First


No.	Туре	Thickness in	Modulus psi	Poisson's Ratio	Strength R,psi
1	P-401/ P-403 HMA Overlay	14.98	200,000	0.35	0
2	P-401/ P-403 HMA Surface	3.00	200,000	0.35	0
3	P-209 Cr Ag	7.00	12,040	0.35	0
4	Subgrade	0.00	3,000	0.35	0

Total thickness to the top of the subgrade = 24.98 in

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	Gulfstream-G-V	99,600	250	1.25
2	Falcon-900	49,000	531	1.25
3	Challenger-CL-604	48,200	732	1.25
4	Gulfstream-G-II	39,600	256	1.25
5	Hawker-800XP	28,120	244	1.25
6	Citation-VI/VII	23,200	342	1.25
7	Learjet-55	21,500	574	1.25
8	Citation-V	20,500	427	1.25
9	Citation-V	18,000	299	1.25
10	SuperKingAir-300	17,120	439	1.25
11	Citation-V	17,110	262	9.55
12	SuperKingAir-350	15,100	2,952	2.10
13	SuperKingAir-300	13,300	3,025	2.10
14	Citation-550B	12,375	1,175	4.60
15	KingAir-B-100	11,800	2,643	-0.95
16	Citation-525	10,600	488	1.25
17	GrnCaravan-CE-208B	8,818	7,632	1.40
18	Baron-E-55	6,580	13,243	0.65
19	EMB-175 STD	83,026	1,095	3.00

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	Gulfstream-G-V	0.99	0.99	1.63
2	Falcon-900	0.00	0.00	1.80
3	Challenger-CL-604	0.00	0.00	1.69
4	Gulfstream-G-II	0.00	0.00	1.71
5	Hawker-800XP	0.00	0.00	1.88
6	Citation-VI/VII	0.00	0.00	2.06
7	Learjet-55	0.00	0.00	1.96
8	Citation-V	0.00	0.00	2.53
9	Citation-V	0.00	0.00	2.53
10	SuperKingAir-300	0.00	0.00	1.97
11	Citation-V	0.00	0.00	2.53
12	SuperKingAir-350	0.00	0.00	1.96
13	SuperKingAir-300	0.00	0.00	1.97
14	Citation-550B	0.00	0.00	2.53
15	KingAir-B-100	0.00	0.00	1.94
16	Citation-525	0.00	0.00	2.57
17	GrnCaravan-CE-208B	0.00	0.00	2.53
18	Baron-E-55	0.00	0.00	2.55
19	EMB-175 STD	0.01	0.02	1.45

FAARFIELD

FAARFIELD v 1.42 - Airport Pavement Design

Section Recn-NO-LIME in Job TWY-F.

Working directory is X:\3138400\181115.02\TECH\Design\Pavement Design\FAARFIELD\

The structure is New Flexible. Asphalt CDF = 0.2371.

Design Life = 20 years.

A design for this section was completed on 07/02/20 at 09:48:28.

Pavement Structure Information by Layer, Top First

No.	Туре	Thickness in	Modulus psi	Poisson's Ratio	Strength R,psi
1	P-401/ P-403 HMA Surface	4.00	200,000	0.35	0
2	P-209 Cr Ag	7.08	49,266	0.35	0
3	P-154 UnCr Ag	12.76	17,853	0.35	0
4	Subgrade	0.00	10,950	0.35	0

Total thickness to the top of the subgrade = 23.84 in

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	Gulfstream-G-V	99,600	250	1.25
2	Falcon-900	49,000	531	1.25
3	Challenger-CL-604	48,200	732	1.25
4	Gulfstream-G-II	39,600	256	1.25
5	Hawker-800XP	28,120	244	1.25
6	Citation-VI/VII	23,200	342	1.25
7	Learjet-55	21,500	574	1.25
8	Citation-V	20,500	427	1.25
9	Citation-V	18,000	299	1.25
10	SuperKingAir-300	17,120	439	1.25
11	Citation-V	17,110	262	9.55
12	SuperKingAir-350	15,100	2,952	2.10
13	SuperKingAir-300	13,300	3,025	2.10
14	Citation-550B	12,375	1,175	4.60
15	KingAir-B-100	11,800	2,643	-0.95
16	Citation-525	10,600	488	1.25
17	GrnCaravan-CE-208B	8,818	7,632	1.40
18	Baron-E-55	6,580	13,243	0.65
19	EMB-175 STD	83,026	1,095	3.00

Additional Airplane Information

TAXIWAY RECONSTRUCTION OPTION, UNTREATED SUBGRADE

			Commendation of the president of the		
No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio	
1	Gulfstream-G-V	1.00	1.00	1.66	
2	Falcon-900	0.00	0.00	1.84	
3	Challenger-CL-604	0.00	0.00	1.72	
4	Gulfstream-G-II	0.00	0.00	1.75	
5	Hawker-800XP	0.00	0.00	1.92	
6	Citation-VI/VII	0.00	0.00	2.11	
7	Learjet-55	0.00	0.00	2.01	
8	Citation-V	0.00	0.00	2.61	
9	Citation-V	0.00	0.00	2.61	
10	SuperKingAir-300	0.00	0.00	2.02	
11	Citation-V	0.00	0.00	2.61	
12	SuperKingAir-350	0.00	0.00	2.01	
13	SuperKingAir-300	0.00	0.00	2.02	
14	Citation-550B	0.00	0.00	2.61	
15	KingAir-B-100	0.00	0.00	1.98	
16	Citation-525	0.00	0.00	2.66	
17	GrnCaravan-CE-208B	0.00	0.00	2.61	
18	Baron-E-55	0.00	0.00	2.64	
19	EMB-175 STD	0.00	0.00	1.47	

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	Gulfstream-G-V	0.08	0.08	2.99
2	Falcon-900	0.04	0.04	3.38
3	Challenger-CL-604	0.03	0.03	3.36
4	Gulfstream-G-II	0.00	0.00	3.10
5	Hawker-800XP	0.00	0.00	3.85
6	Citation-VI/VII	0.01	0.01	4.28
7	Learjet-55	0.01	0.01	4.56
8	Citation-V	0.01	0.01	7.10
9	Citation-V	0.00	0.00	7.10
10	SuperKingAir-300	0.00	0.00	4.18
11	Citation-V	0.00	0.00	7.10
12	SuperKingAir-350	0.00	0.01	4.09
13	SuperKingAir-300	0.00	0.00	4.18
14	Citation-550B	0.00	0.00	7.24
15	KingAir-B-100	0.00	0.00	3.76
16	Citation-525	0.00	0.00	7.48
17	GrnCaravan-CE-208B	0.00	0.00	7.22
18	Baron-E-55	0.00	0.00	7.60
19	EMB-175 STD	0.04	0.05	2.87

TAXIWAY RECONSTRUCTION OPTION, UNTREATED SUBGRADE

	TWY-F Re Layer Material	cn-NO-LIME Des Thickness (in)	s. Life = 20 Modulus or R (psi)
	P-401/P-403 HMA Surface	4.00	200,000
	P-209 Cr Ag	7.08	49.266
->	P-154 UnCr Ag	12.76	17,853
	N = 5; HMA CDF = 0.24;	CBR=7.3 Sublayers; Subgrade	10.950

FAARFIELD

FAARFIELD v 1.42 - Airport Pavement Design

Section Recon-LIME in Job TWY-F.

Working directory is X:\3138400\181115.02\TECH\Design\Pavement Design\FAARFIELD\

The structure is New Flexible. Asphalt CDF was not computed.

Design Life = 20 years.

A design for this section was completed on 02/18/21 at 18:39:23.

Compaction requirements for this section were computed on 02/18/21 at 18:40:24.

Pavement Structure Information by Layer, Top First

No.	Туре	Thickness in	Modulus psi	Poisson's Ratio	Strength R,psi
1	P-401/ P-403 HMA Surface	4.00	200,000	0.35	0
2	P-209 Cr Ag	8.94	96,953	0.35	0
3	User Defined	16.00	45,000	0.35	0
4	Subgrade	0.00	3,000	0.35	0

Total thickness to the top of the subgrade = 28.94 in

Airplane Information

No.	Name	Gross Wt. Ibs	Annual Departures	% Annual Growth
1	Gulfstream-G-V	99,600	250	1.25
2	Falcon-900	49,000	531	1.25
3	Challenger-CL-604	48,200	732	1.25
4	Gulfstream-G-II	39,600	256	1.25
5	Hawker-800XP	28,120	244	1.25
6	Citation-VI/VII	23,200	342	1.25
7	Learjet-55	21,500	574	1.25
8	Citation-V	20,500	427	1.25
9	Citation-V	18,000	299	1.25
10	SuperKingAir-300	17,120	439	1.25
11	Citation-V	17,110	262	9.55
12	SuperKingAir-350	15,100	2,952	2.10
13	SuperKingAir-300	13,300	3,025	2.10
14	Citation-550B	12,375	1,175	4.60
15	KingAir-B-100	11,800	2,643	-0.95
16	Citation-525	10,600	488	1.25
17	GrnCaravan-CE-208B	8,818	7,632	1.40
18	Baron-E-55	6,580	13,243	0.65
19	EMB-175 STD	83,026	1,095	3.00

No.	Name	CDF Contribution	CDF Max for Airplane	P/C Ratio
1	Gulfstream-G-V	0.99	0.99	1.55
2	Falcon-900	0.00	0.00	1.69
3	Challenger-CL-604	0.00	0.00	1.60
4	Gulfstream-G-II	0.00	0.00	1.61
5	Hawker-800XP	0.00	0.00	1.75
6	Citation-VI/VII	0.00	0.00	1.90
7	Learjet-55	0.00	0.00	1.82
8	Citation-V	0.00	0.00	2.27
9	Citation-V	0.00	0.00	2.27
10	SuperKingAir-300	0.00	0.00	1.83
11	Citation-V	0.00	0.00	2.27
12	SuperKingAir-350	0.00	0.00	1.82
13	SuperKingAir-300	0.00	0.00	1.83
14	Citation-550B	0.00	0.00	2.27
15	KingAir-B-100	0.00	0.00	1.80
16	Citation-525	0.00	0.00	2.30
17	GrnCaravan-CE-208B	0.00	0.00	2.27
18	Baron-E-55	0.00	0.00	2.28
19	EMB-175 STD	0.01	0.01	1.39

Subgrade Compaction Requirements

NonCohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
100	0 - 20		Gulfstream-G-V
95	20 - 26		Gulfstream-G-V
90	26 - 37	0 - 8	Gulfstream-G-V
85	37 - 63	8 - 34	Gulfstream-G-V

Cohesive Soil

Percent Maximum Dry Density(%)	Depth of compaction from pavement surface (in)	Depth of compaction from top of subgrade (in)	Critical Airplane for Compaction
95	0 - 19		Gulfstream-G-V
90	19 - 24		Gulfstream-G-V
85	24 - 28		Gulfstream-G-V
80	28 - 36	0 - 7	Gulfstream-G-V

Subgrade Compaction Notes:

1.Noncohesive soils, for the purpose of determining compaction control, are those with a plasticity index (PI) less than 3.

2.Tabulated values indicate depth ranges within which densities should equal or exceed the indicated percentage of the maximum dry density as specified in item P-152.

3.Maximum dry density is determined using ASTM Method D 698.

4. The subgrade in cut areas should have natural densities shown or should (a) be compacted from the surface to achieve the required densities, (b) be removed and replaced at the densities shown, or (c) when economics and grades permit, be covered with sufficient select or subbase material so that the uncompacted subgrade is at a depth where the in-place densities are satisfactory.

Appendix G - Life Cycle Cost Analysis

Mead & Hunt

INTENTIONALLY BLANK

Life Cycle Cost Analysis Runway 7-25, Taxiway Connectors, and Parallel Taxiway Improvements

Present Cost

	Thickness (ft)	Qttv	Units	U	nit Price		Tota
Runway Rehabilitation (Not Selected)		5.09					
Asphalt Pavement Removal	Varies	68,400	SY	\$	9.00	\$	615,600.00
Subgrade Stabililization, Excavation Below Subgrade	-	4.500	CY	\$	70.00	\$	315,000.00
Crushed Aggregate Base Course, P-209	1.58	36,920	CY	\$	75.00	\$	2,769,000.00
Asphalt Surface Course, P-401	0.33	17,630	TON	\$	165.00	\$	2,908,950.00
		,			tal Cost	\$	6,608,550.00
	Thickness (ft)	Qtty	Units	UI	nit Price		Tota
Runway Reconstruction (Base Bid)							
Asphalt Pavement Removal	Varies	68,500	SY	\$	9.00	\$	616,500.00
Subgrade Preparation	-	72,500	SY	\$	3.00	\$	217,500.00
Lime Treated Subgrade, 16-Inch Depth	1.33	72,500	SY	\$	16.50	\$	1,196,250.00
Crushed Aggregate Base Course, P-209	0.71	16,600	CY	\$	75.00	\$	1,245,000.00
Asphalt Surface Course, P-401	0.33	17,100	TON	\$	165.00	\$	2,821,500.00
				Tot	tal Cost	\$	6,096,750.00
				-			
	Thickness (ft)	Qtty	Units	UI	nit Price		Tota
Taxiway Connectors Reconstruction (Alt 1)							
Asphalt Pavement Removal	Varies	16,100	SY	\$	9.00	\$	144,900.00
Subgrade Preparation	-	11,400	SY	\$	3.00	\$	34,200.00
Subgrade i reparation							
Lime Treated Subgrade, 16-Inch Depth	1.33	11,400	SY	\$	16.50	\$	188,100.00
č	1.33 0.71	11,400 2,700	SY CY	\$ \$	16.50 75.00	\$ \$,
Lime Treated Subgrade, 16-Inch Depth						•	202,500.00
Lime Treated Subgrade, 16-Inch Depth Crushed Aggregate Base Course, P-209	0.71	2,700	CY	\$ \$	75.00	\$	188,100.00 202,500.00 429,000.00 998,700.00
Lime Treated Subgrade, 16-Inch Depth Crushed Aggregate Base Course, P-209	0.71 0.33	2,700 2,600	CY TON	\$ \$ <u>Tot</u>	75.00 165.00 tal Cost	\$ \$	202,500.00 429,000.00 998,700.00
Lime Treated Subgrade, 16-Inch Depth Crushed Aggregate Base Course, P-209 Asphalt Surface Course, P-401	0.71	2,700	CY	\$ \$ <u>Tot</u>	75.00 165.00	\$ \$	202,500.00 429,000.00 998,700.00
Lime Treated Subgrade, 16-Inch Depth Crushed Aggregate Base Course, P-209 Asphalt Surface Course, P-401 Taxiway Connectors Reconstruction (Alt 2)	0.71 0.33 <i>Thickness (ft)</i>	2,700 2,600 <i>Qtty</i>	CY TON Units	\$ \$ Tot	75.00 165.00 tal Cost	\$ \$ \$	202,500.00 429,000.00 998,700.00 Tota
Lime Treated Subgrade, 16-Inch Depth Crushed Aggregate Base Course, P-209 Asphalt Surface Course, P-401 Taxiway Connectors Reconstruction (Alt 2) Asphalt Pavement Removal	0.71 0.33	2,700 2,600 Qtty 90,700	CY TON Units	\$ \$ <u>Tot</u> Ui	75.00 165.00 tal Cost nit Price 9.00	\$ \$ \$	202,500.00 429,000.00 998,700.00 Tota 816,300.00
Lime Treated Subgrade, 16-Inch Depth Crushed Aggregate Base Course, P-209 Asphalt Surface Course, P-401 Taxiway Connectors Reconstruction (Alt 2) Asphalt Pavement Removal Subgrade Preparation	0.71 0.33 <i>Thickness (ft)</i> Varies	2,700 2,600 Qtty 90,700 63,600	CY TON Units SY SY	\$ \$ Tot UI \$ \$	75.00 165.00 tal Cost nit Price 9.00 3.00	\$ \$ \$ \$ \$	202,500.00 429,000.00 998,700.00 Tota 816,300.00 190,800.00
Lime Treated Subgrade, 16-Inch Depth Crushed Aggregate Base Course, P-209 Asphalt Surface Course, P-401 Taxiway Connectors Reconstruction (Alt 2) Asphalt Pavement Removal Subgrade Preparation Lime Treated Subgrade, 16-Inch Depth	0.71 0.33 <i>Thickness (ft)</i> Varies - 1.33	2,700 2,600 Qtty 90,700 63,600 63,600	CY TON Units SY SY SY	\$ \$ <i>Tot</i> <i>U</i> i \$ \$ \$	75.00 165.00 tal Cost nit Price 9.00 3.00 16.50	\$ \$ \$ \$ \$ \$ \$	202,500.00 429,000.00 998,700.00 Tota 816,300.00 190,800.00 1,049,400.00
Lime Treated Subgrade, 16-Inch Depth Crushed Aggregate Base Course, P-209 Asphalt Surface Course, P-401 Taxiway Connectors Reconstruction (Alt 2) Asphalt Pavement Removal Subgrade Preparation	0.71 0.33 <i>Thickness (ft)</i> Varies	2,700 2,600 Qtty 90,700 63,600	CY TON Units SY SY	\$ \$ Tot UI \$ \$	75.00 165.00 tal Cost nit Price 9.00 3.00	\$ \$ \$ \$ \$	202,500.00 429,000.00

Life Cycle Cost Analysis Runway 7-25, Taxiway Connectors, and Paralle Taxiway Improvements

Maintenance Schedules

			Runway R	ehabilitation (Not	Sel	lected)		
Year	ltem	Thickness (in)	Qtty	Units		Unit Price	Total	Comments
5	Crack Seal		47600.0	FT	\$	4.00	\$ 190,400.00	
5	Surface Treatment		69950.0	SY	\$	5.00	\$ 349,750.00	
10	Crack Seal		47600.0	FT	\$	4.00	\$ 190,400.00	
10	Surface Treatment		69950.0	SY	\$	5.00	\$ 349,750.00	
15	P-101 Cold Milling 3"		91660.0	SY	\$	4.00	\$ 366,640.00	
15	P-401 Hot Mix Asphalt	0.25	11160.0	TON	\$	165.00	\$ 1,841,400.00	3" Mill/Overlay
20	Crack Seal		47600.0	FT	\$	4.00	\$ 190,400.00	
20	Surface Treatment		69950.0	SY	\$	5.00	\$ 349,750.00	
25	Crack Seal		47600.0	FT	\$	4.00	\$ 190,400.00	
25	Surface Treatment		69950.0	SY	\$	5.00	\$ 349,750.00	
30	Salvage							End of Service Life

			Runway F	Reconstruction (E	Base	e Bid)		
Year	Item	Thickness (in)	Qtty	Units		Unit Price	Total	Comments
5	Crack Seal		47600.0	FT	\$	4.00	\$ 190,400.00	
5	Surface Treatment		69950.0	SY	\$	5.00	\$ 349,750.00	
10	Crack Seal		47600.0	FT	\$	4.00	\$ 190,400.00	
10	Surface Treatment		69950.0	SY	\$	5.00	\$ 349,750.00	
15	P-101 Cold Milling 3"		91660.0	SY	\$	4.00	\$ 366,640.00	
15	P-401 Hot Mix Asphalt	0.25	11160.0	TON	\$	165.00	\$ 1,841,400.00	3" Mill/Overlay
20	Crack Seal		47600.0	FT	\$	4.00	\$ 190,400.00	
20	Surface Treatment		69950.0	SY	\$	5.00	\$ 349,750.00	
25	Crack Seal		47600.0	FT	\$	4.00	\$ 190,400.00	
20	Surface Treatment		69950.0	SY	\$	5.00	\$ 349,750.00	
30	Salvage							End of Service Life

			Taxiway Conne	ctors Reconstru	ctio	n (Bid Alt 1)		
Year	Item	Thickness (in)	Qtty	Units		Unit Price	Total	Comments
5	Crack Seal		1500.0	FT	\$	4.00	\$ 6,000.00	
J	Surface Treatment		10150.0	SY	\$	5.00	\$ 50,750.00	
10	Crack Seal		1500.0	FT	\$	4.00	\$ 6,000.00	
10	Surface Treatment		10150.0	SY	\$	5.00	\$ 50,750.00	
15	P-101 Cold Milling 3"		10150.0	SY	\$	4.00	\$ 40,600.00	
15	P-401 Hot Mix Asphalt	0.25	1770.0	TON	\$	165.00	\$ 292,050.00	3" Mill/Overlay
20	Crack Seal		1500.0	FT	\$	4.00	\$ 6,000.00	
20	Surface Treatment		10150.0	SY	\$	5.00	\$ 50,750.00	
25	Crack Seal		1500.0	FT	\$	4.00	\$ 6,000.00	
20	Surface Treatment		10150.0	SY	\$	5.00	\$ 50,750.00	
30	Salvage							End of Service Life

			Parallel Taxiw	ay Reconstruction	on (Bid Alt 2)		
Year	Item	Thickness (in)	Qtty	Units		Unit Price	Total	Comments
5	Crack Seal		25000.0	FT	\$	4.00	\$ 100,000.00	
5	Surface Treatment		55810.0	SY	\$	5.00	279050	
10	Crack Seal		25000.0	FT	\$	4.00	\$ 100,000.00	
10	Surface Treatment		55810.0	SY	\$	5.00	\$ 279,050.00	
15	P-101 Cold Milling 3"		55810.0	SY	\$	4.00	\$ 223,240.00	
15	P-401 Hot Mix Asphalt	0.25	1770.0	TON	\$	165.00	\$ 292,050.00	3" Mill/Overlay
20	Crack Seal		25000.0	FT	\$	4.00	\$ 100,000.00	
20	Surface Treatment		55810.0	SY	\$	5.00	\$ 279,050.00	
25	Crack Seal		25000.0	FT	\$	4.00	\$ 100,000.00	
25	Surface Treatment		55810.0	SY	\$	5.00	\$ 279,050.00	
30	Salvage							End of Service Life

Life Cycle Cost Analysis - Runway Rehabilitation (Not Selected)

Year	Present Worth	Event Description	I	Present Cost	E	scalated Cost	F	Present Value
	Factor 4%					3.50%		4%
0	1.0000	Initial Construction	\$	6,608,550.00	\$	6,608,550.00	\$	6,608,550.00
1	0.9615							
2	0.9246							
3	0.8890							
4	0.8548							
5	0.8219	Crack Seal + Surface Treatment	\$	540,150.00	\$	641,528.76	\$	527,289.88
6	0.7903							
7	0.7599							
8	0.7307							
9	0.7026							
10	0.6756	Crack Seal + Surface Treatment	\$	540,150.00	\$	761,934.92	\$	514,735.93
11	0.6496							
12	0.6246							
13	0.6006							
14	0.5775							
15	0.5553	3" Mill and Overlay	\$	2,208,040.00	\$	4,393,533.40	\$	2,005,151.29
16	0.5339							
17	0.5134							
18	0.4936							
19	0.4746							
20	0.4564	Crack Seal + Surface Treatment	\$	540,150.00	\$	1,074,784.45	\$	490,517.60
21	0.4388							
22	0.4220							
23	0.4057							
24	0.3901							
25	0.3751	Crack Seal + Surface Treatment	\$	540,150.00	\$	1,276,506.78	\$	478,839.14
26	0.3607							
27	0.3468							
28	0.3335							
29	0.3207							
30	0.3083	Salvage (End of Service Life)						

TOTAL = \$ 10,625,083.84

Life Cycle Cost Analysis - Runway Reconstruction (Base Bid)

Year	Present Worth	Event Description	F	Present Cost	E	scalated Cost	F	Present Value
	Factor 4%		-			3.50%		4%
0	1.0000	Initial Construction	\$	6,096,750.00	¢	6,096,750.00	\$	6,096,750.00
1	0.9615		φ	0,090,750.00	φ	0,090,750.00	φ	0,090,750.00
2	0.9246							
3	0.8890							
4	0.8548							
4 5	0.8219	Crack Seal + Surface Treatment	\$	540,150.00	¢	641,528.76	¢	527,289.88
6	0.7903	Clack Seal ' Sunace Treatment	Ψ	540,150.00	ψ	041,020.70	ψ	527,209.00
7	0.7599							
8	0.7307							
9	0.7026							
10	0.6756	Crack Seal + Surface Treatment	\$	540,150.00	\$	761,934.92	\$	514,735.93
11	0.6496		Ψ	010,100.00	Ψ	101,001.02	Ψ	011,100.00
12	0.6246							
13	0.6006							
14	0.5775							
15	0.5553	3" Mill and Overlay	\$	2.208.040.00	\$	3,699,237.23	\$	2,054,055.12
16	0.5339	,	·	,,	,	-,,	•	,
17	0.5134							
18	0.4936							
19	0.4746							
20	0.4564	Crack Seal + Surface Treatment	\$	540,150.00	\$	1,074,784.45	\$	490,517.60
21	0.4388							·
22	0.4220							
23	0.4057							
24	0.3901							
25	0.3751							
25	0.3751	Crack Seal + Surface Treatment	\$	540,150.00	\$	1,276,506.78	\$	478,839.14
27	0.3468							
28	0.3335							
29	0.3207							
30	0.3083	Salvage (End of Service Life)						

TOTAL = \$ 10,162,187.67

Life Cycle Cost Analysis -Taxiway Connectors Reconstruction (Bid Alt 1)

Year	Present Worth Factor	Event Description	P	resent Cost	Es	calated Cost	Ρ	resent Value
	4%					3.50%		4%
0	1.0000	Initial Construction	\$	998,700.00	\$	998,700.00	\$	998,700.00
1	0.9615							
2	0.9246							
3	0.8890							
4	0.8548							
5	0.8219	Crack Seal + Surface Treatment	\$	56,750.00	\$	67,401.20	\$	55,398.87
6	0.7903							
7	0.7599							
8	0.7307							
9	0.7026							
10	0.6756	Crack Seal + Surface Treatment	\$	56,750.00	\$	80,051.48	\$	54,079.91
11	0.6496							
12	0.6246							
13	0.6006							
14	0.5775							
15	0.5553	3" Mill and Overlay	\$	332,650.00	\$	557,304.79	\$	309,451.57
16	0.5339							
17	0.5134							
18	0.4936							
19	0.4746							
20	0.4564	Crack Seal + Surface Treatment	\$	56,750.00	\$	112,920.52	\$	51,535.45
21	0.4388							
22	0.4220							
23	0.4057							
24	0.3901							
25	0.3751							
25	0.3751	Crack Seal + Surface Treatment	\$	56,750.00	\$	134,114.15	\$	50,308.47
27	0.3468							
28	0.3335							
29	0.3207							
30	0.3083	Salvage (End of Service Life)						

TOTAL = \$ 1,519,474.27

Life Cycle Cost Analysis - Parallel Taxiway Reconstruction (Bid Alt 2)

Year	Present Worth	Event Description	F	Present Cost	E	scalated Cost	F	Present Value
rear	Factor	Event Description						
	4%		-		_	3.50%	_	4%
0	1.0000	Initial Construction	\$	5,734,500.00	\$	5,734,500.00	\$	5,734,500.00
1	0.9615							
2	0.9246							
3	0.8890							
4	0.8548							
5	0.8219	Crack Seal + Surface Treatment	\$	379,050.00	\$	450,192.49	\$	370,025.41
6	0.7903							
7	0.7599							
8	0.7307							
9	0.7026							
10	0.6756	Crack Seal + Surface Treatment	\$	379,050.00	\$	534,687.46	\$	361,215.69
11	0.6496							
12	0.6246							
13	0.6006							
14	0.5775							
15	0.5553	3" Mill and Overlay	\$	515,290.00	\$	863,290.50	\$	479,354.57
16	0.5339							
17	0.5134							
18	0.4936							
19	0.4746							
20	0.4564	Crack Seal + Surface Treatment	\$	379,050.00	\$	754,229.47	\$	344,220.48
21	0.4388							
22	0.4220							
23	0.4057							
24	0.3901							
25	0.3751							
25	0.3751	Crack Seal + Surface Treatment	\$	379,050.00	\$	895,788.01	\$	336,025.13
27	0.3468							
28	0.3335							
29	0.3207							
30	0.3083	Salvage (End of Service Life)						

TOTAL = \$ 7,625,341.29

Appendix H - Construction Schedule

 Mead & Lunt
 A10

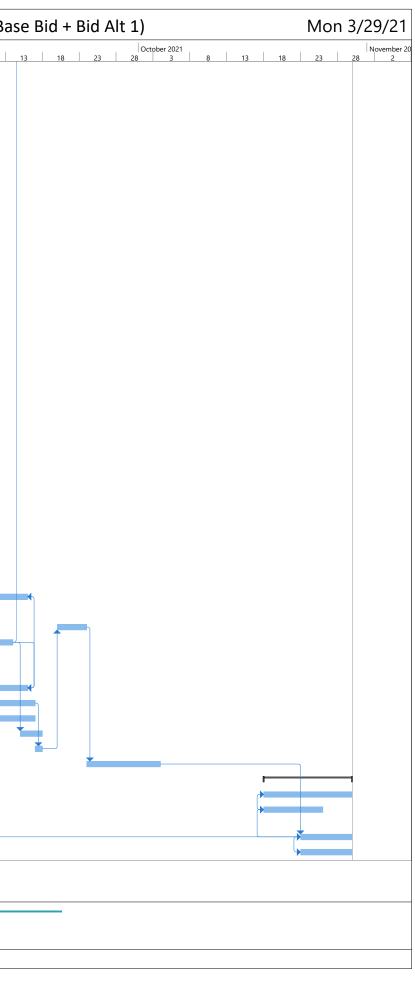
 X:\3138400\181115.02\TECH\Design\Reports\Engineering\100% Final\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report- Final compiled wAppdx.docx

INTENTIONALLY BLANK

At Reconstruction (Base Bid) auction Element se 1 irfield Safety and Traffic Control ompliance with Pollution, Erosion, and Siltation Control irport Access and Haul Route Repair Inderground Utility Investigation and Potholing remolish Asphalt Pavement sphalt Crack Repair (under 1.5" width) sphalt Crack Repair (over 1.5" width) emove Pavement Markings old Mill, Variable Depth (2 inches Maximum) emolish Conduit, Cable, and Counterpoise remolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	117 days 91 days 1 day 2 days 1 day 2 days 5 days 6 days 6 days 1 day	Mon 6/28/21 Thu 9/9/21 Tue 6/29/21 Tue 6/29/21 Wed 7/7/21 Wed 7/7/21 Thu 7/1/21 Mon 7/5/21	Fri 10/22/21 Sun 9/26/21 Mon 6/28/21	15 20 25			10 15	20	25	30 4	9	14 19	24 29		8
uction Element se 1 irfield Safety and Traffic Control ompliance with Pollution, Erosion, and Siltation Control irport Access and Haul Route Repair Inderground Utility Investigation and Potholing emolish Asphalt Pavement sphalt Crack Repair (under 1.5" width) sphalt Crack Repair (over 1.5" width) emove Pavement Markings old Mill, Variable Depth (2 inches Maximum) emolish Conduit, Cable, and Counterpoise emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	91 days 1 day 3 days 2 days 1 day 5 days 6 days 6 days 1 day 2 days	Mon 6/28/21 Mon 6/28/21 Mon 6/28/21 Thu 9/9/21 Tue 6/29/21 Wed 7/7/21 Wed 7/7/21 Thu 7/1/21 Mon 7/5/21 Mon 7/2/21	Sun 9/26/21 Mon 6/28/21 Wed 6/30/21 Fri 9/10/21 Tue 6/29/21 Sat 7/3/21 Mon 7/12/21 Mon 7/12/21 Thu 7/1/21 Tue 7/6/21												
se 1 irfield Safety and Traffic Control ompliance with Pollution, Erosion, and Siltation Control irport Access and Haul Route Repair Inderground Utility Investigation and Potholing remolish Asphalt Pavement sphalt Crack Repair (under 1.5" width) sphalt Crack Repair (over 1.5" width) emove Pavement Markings old Mill, Variable Depth (2 inches Maximum) emove and Salvage REILs. Demolish PCC Foundation remolish Conduit, Cable, and Counterpoise remolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	91 days 1 day 3 days 2 days 1 day 5 days 6 days 6 days 1 day 2 days	Mon 6/28/21 Mon 6/28/21 Mon 6/28/21 Thu 9/9/21 Tue 6/29/21 Wed 7/7/21 Wed 7/7/21 Thu 7/1/21 Mon 7/5/21 Mon 6/28/21	Sun 9/26/21 Mon 6/28/21 Wed 6/30/21 Fri 9/10/21 Tue 6/29/21 Sat 7/3/21 Mon 7/12/21 Mon 7/12/21 Thu 7/1/21 Tue 7/6/21												-
irfield Safety and Traffic Control ompliance with Pollution, Erosion, and Siltation Control irport Access and Haul Route Repair Inderground Utility Investigation and Potholing remolish Asphalt Pavement sphalt Crack Repair (under 1.5" width) sphalt Crack Repair (over 1.5" width) emove Pavement Markings old Mill, Variable Depth (2 inches Maximum) emove and Salvage REILs. Demolish PCC Foundation remolish Conduit, Cable, and Counterpoise remolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	1 day 3 days 2 days 1 day 5 days 6 days 6 days 1 day 2 days 1 day 2 days	Mon 6/28/21 Mon 6/28/21 Thu 9/9/21 Tue 6/29/21 Tue 6/29/21 Wed 7/7/21 Wed 7/7/21 Thu 7/1/21 Mon 7/5/21 Mon 6/28/21	Mon 6/28/21 Wed 6/30/21 Fri 9/10/21 Tue 6/29/21 Sat 7/3/21 Mon 7/12/21 Mon 7/12/21 Thu 7/1/21 Tue 7/6/21			<u> </u>								Ĩ	•
ompliance with Pollution, Erosion, and Siltation Control irport Access and Haul Route Repair Inderground Utility Investigation and Potholing emolish Asphalt Pavement sphalt Crack Repair (under 1.5" width) sphalt Crack Repair (over 1.5" width) emove Pavement Markings old Mill, Variable Depth (2 inches Maximum) emove and Salvage REILs. Demolish PCC Foundation emolish Conduit, Cable, and Counterpoise emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	3 days 2 days 1 day 5 days 6 days 6 days 1 day 2 days 1 day 2 days	Mon 6/28/21 Thu 9/9/21 Tue 6/29/21 Tue 6/29/21 Wed 7/7/21 Wed 7/7/21 Thu 7/1/21 Mon 7/5/21 Mon 6/28/21	Wed 6/30/21 Fri 9/10/21 Tue 6/29/21 Sat 7/3/21 Mon 7/12/21 Mon 7/12/21 Thu 7/1/21 Tue 7/6/21			<u> </u>									•
irport Access and Haul Route Repair Inderground Utility Investigation and Potholing emolish Asphalt Pavement sphalt Crack Repair (under 1.5" width) sphalt Crack Repair (over 1.5" width) emove Pavement Markings old Mill, Variable Depth (2 inches Maximum) emove and Salvage REILs. Demolish PCC Foundation emolish Conduit, Cable, and Counterpoise emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	2 days 1 day 5 days 6 days 6 days 1 day 2 days 1 day 2 days 2 days	Thu 9/9/21 Tue 6/29/21 Tue 6/29/21 Wed 7/7/21 Wed 7/7/21 Thu 7/1/21 Mon 7/5/21 Mon 6/28/21	Fri 9/10/21 Tue 6/29/21 Sat 7/3/21 Mon 7/12/21 Mon 7/12/21 Thu 7/1/21 Tue 7/6/21]								Ī	•
inderground Utility Investigation and Potholing emolish Asphalt Pavement sphalt Crack Repair (under 1.5" width) sphalt Crack Repair (over 1.5" width) emove Pavement Markings old Mill, Variable Depth (2 inches Maximum) emove and Salvage REILs. Demolish PCC Foundation emolish Conduit, Cable, and Counterpoise emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	1 day 5 days 6 days 6 days 1 day 2 days 1 day 2 days 2 days	Tue 6/29/21 Tue 6/29/21 Wed 7/7/21 Wed 7/7/21 Thu 7/1/21 Mon 7/5/21 Mon 6/28/21	Tue 6/29/21 Sat 7/3/21 Mon 7/12/21 Mon 7/12/21 Thu 7/1/21 Tue 7/6/21											Ĩ	
emolish Asphalt Pavement sphalt Crack Repair (under 1.5" width) sphalt Crack Repair (over 1.5" width) emove Pavement Markings old Mill, Variable Depth (2 inches Maximum) emove and Salvage REILs. Demolish PCC Foundation remolish Conduit, Cable, and Counterpoise remolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	5 days 6 days 6 days 1 day 2 days 1 day 2 days 2 days	Tue 6/29/21 Wed 7/7/21 Wed 7/7/21 Thu 7/1/21 Mon 7/5/21 Mon 6/28/21	Sat 7/3/21 Mon 7/12/21 Mon 7/12/21 Thu 7/1/21 Tue 7/6/21]									
sphalt Crack Repair (under 1.5" width) sphalt Crack Repair (over 1.5" width) emove Pavement Markings old Mill, Variable Depth (2 inches Maximum) emove and Salvage REILs. Demolish PCC Foundation emolish Conduit, Cable, and Counterpoise emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	6 days 6 days 1 day 2 days 1 day 2 days	Wed 7/7/21 Wed 7/7/21 Thu 7/1/21 Mon 7/5/21 Mon 6/28/21	Mon 7/12/21 Mon 7/12/21 Thu 7/1/21 Tue 7/6/21]									
sphalt Crack Repair (under 1.5" width) sphalt Crack Repair (over 1.5" width) emove Pavement Markings old Mill, Variable Depth (2 inches Maximum) emove and Salvage REILs. Demolish PCC Foundation emolish Conduit, Cable, and Counterpoise emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	6 days 6 days 1 day 2 days 1 day 2 days	Wed 7/7/21 Wed 7/7/21 Thu 7/1/21 Mon 7/5/21 Mon 6/28/21	Mon 7/12/21 Mon 7/12/21 Thu 7/1/21 Tue 7/6/21												
sphalt Crack Repair (over 1.5" width) emove Pavement Markings old Mill, Variable Depth (2 inches Maximum) emove and Salvage REILs. Demolish PCC Foundation emolish Conduit, Cable, and Counterpoise emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	6 days 1 day 2 days 1 day 2 days	Wed 7/7/21 Thu 7/1/21 Mon 7/5/21 Mon 6/28/21	Mon 7/12/21 Thu 7/1/21 Tue 7/6/21												
old Mill, Variable Depth (2 inches Maximum) emove and Salvage REILs. Demolish PCC Foundation emolish Conduit, Cable, and Counterpoise emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	2 days 1 day 2 days	Mon 7/5/21 Mon 6/28/21	Tue 7/6/21			1									
emove and Salvage REILs. Demolish PCC Foundation emolish Conduit, Cable, and Counterpoise emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	1 day 2 days	Mon 6/28/21			1	I T									
emolish Conduit, Cable, and Counterpoise emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise	2 days		Mon 6/28/21												
emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise		Thu 7/1/21						J							
emolish Concrete Encased Conduit, Cable, and ounterpoise emove Cable and Counterpoise			Fri 7/2/21												
ounterpoise emove Cable and Counterpoise		Thu 7/1/21	Mon 7/5/21												
emolish Electrical Junction Can		Tue 6/29/21	Fri 7/2/21												
		Thu 7/1/21	Thu 7/1/21		>										
		Thu 7/1/21 Thu 7/1/21	Fri 7/2/21 Fri 7/2/21		→ ·····										
emove and Salvage Elevated Taxiway Edge Light Fixture		Thu 7/1/21	Fri 7/2/21												
nd Transformer. Protect Can.															
	2 days	Tue 6/29/21	Wed 6/30/21		*										
	d 2 days	Tue 6/29/21	Wed 6/30/21												
	1 day	Tue 6/29/21	Tue 6/29/21	L. L											
	3 days	Wed 6/30/21	Fri 7/2/21												
	4 days	Sat 7/3/21	Tue 7/6/21												
IALSF Bar	1 day	Wed 7/7/21	Wed 7/7/21												
							_ r								
	7 days				→										
me Treated Subgrade, 16-inch Depth (Control Strip)	1 day	Sat 7/3/21	Sat 7/3/21												
ime Treated Subgrade, 16-inch Depth (1st Mix)	16 days	Tue 7/6/21	Wed 7/21/21												
	16 days	Tue 7/13/21	Wed 7/28/21												
	16 days	Fri 7/2/21	Sat 7/17/21												
			Sat 7/31/21												
Iulti-Axial Geogrid	16 days	Fri 7/16/21	Sat 7/31/21												
-															
	28 days	Wed 7/28/21	Tue 8/24/21										J		
	28 days	Wed 7/28/21	Tue 8/24/21						*						
sphalt Concrete Surface Course, P-401 (Control Strip #1)) 1 day	Wed 8/11/21	Wed 8/11/21												
sphalt Concrete Surface Course, P-401 (Control Strip #2)) 1 day	Wed 8/18/21	Wed 8/18/21												
sphalt Concrete Surface Course, P-401 (First Lift)	6 days	Wed 8/25/21	Mon 8/30/21									ļi	↓		
sphalt Concrete Surface Course, P-401 (Second Lift)	6 days	Wed 9/1/21	Mon 9/6/21												
nstall 2 Runway Threshold Monuments	1 day	Tue 9/7/21	Tue 9/7/21												
	and Transformer. Protect Can Remove and Salvage Elevated Threshold Light Fixture and Transformer. Protect Can Remove and Salvage In-pavement Runway Edge Light ixture and Transformer. Protect Can. Demolish MALSF Threshold Bar (13 Lights). Salvage Existing Fixtures Demolish MALSF Centerline Bars (5 Lights Each). Salvage Existing Fixtures Demolish Reinforced Foundation from Abandoned WALSF Bar Demolish Abandoned Waterline, if Encountered Jinclassified Excavation and Haul-Off Embankment in Place Subgrade Preparation Place Asphalt Compacted Grindings, 24-inches thick Lime Treated Subgrade, 16-inch Depth (Control Strip) Lime Treated Subgrade, 16-inch Depth (1st Mix) Lime Treated Subgrade, 16-inch Depth (2nd Mix and Compact) n-Place Drying Techniques Subgrade Stabilization, Excavation Below Subgrade Multi-Axial Geogrid Crushed Aggregate Base Course, P-209 (Control Strip) Crushed Aggregate Base Course, P-209 (Shoulders) Asphalt Concrete Surface Course, P-401 (Control Strip #1 Asphalt Concrete Surface Course, P-401 (Control Strip #2 Asphalt Concrete Surface Course, P-401 (Second Lift) Install 2 Runway Threshold Monuments Task	Remove and Salvage Elevated Threshold Light Fixture and 2 days Transformer. Protect Can1 dayRemove and Salvage In-pavement Runway Edge Light ixture and Transformer. Protect Can.1 dayDemolish MALSF Threshold Bar (13 Lights). Salvage Existing Fixtures3 daysDemolish 3 MALSF Centerline Bars (5 Lights Each). adalvage Existing Fixtures4 daysDemolish A bandoned Waterline, if Encountered2 daysDemolish Abandoned Waterline, if Encountered2 daysJuclassified Excavation and Haul-Off10 daysEmbankment in Place8 daysJubgrade Preparation16 daysPlace Asphalt Compacted Grindings, 24-inches thick7 daysIme Treated Subgrade, 16-inch Depth (Control Strip)1 dayIme Treated Subgrade, 16-inch Depth (2nd Mix and Compact)16 daysn-Place Drying Techniques16 daysMulti-Axial Geogrid16 daysCrushed Aggregate Base Course, P-209 (Control Strip)1 dayCrushed Aggregate Base Course, P-209 (Shoulders)28 daysAsphalt Concrete Surface Course, P-401 (Control Strip #1)1 dayAsphalt Concrete Surface Course, P-401 (Control Strip #2)1 dayAsphalt Concrete Surface Course, P-401 (Second Lift)6 daysAsphalt Con	and Transformer. Protect Can Image: Can Selvage Elevated Threshold Light Fixture and 2 days Tue 6/29/21 rransformer. Protect Can. 1 day Tue 6/29/21 Remove and Salvage In-pavement Runway Edge Light 1 day Tue 6/29/21 Sitture and Transformer. Protect Can. 3 days Wed 6/30/21 Demolish MALSF Threshold Bar (13 Lights). Salvage 3 days Sat 7/3/21 Demolish MALSF Cheterline Bars (5 Lights Each). 4 days Sat 7/3/21 Demolish Abandoned Waterline, if Encountered 2 days Thu 7/1/21 Jnclassified Excavation and Haul-Off 10 days Thu 7/1/21 Demolish Abandoned Waterline, if Encountered 2 days Mon 7/5/21 Bibgrade Preparation 16 days Fri 7/2/21 Palace Asphalt Compacted Grindings, 24-inches thick 7 days Wed 6/30/21 Ime Treated Subgrade, 16-inch Depth (Control Strip) 1 day Sat 7/3/21 Ime Treated Subgrade, 16-inch Depth (2nd Mix and 16 days Fri 7/12/21 Ime Treated Subgrade, 16-inch Depth (2nd Mix and 16 days Fri 7/16/21 Compact) 16 days Fri 7/16/21 Wulti-Axial Geogrid 16 days Fri 7/16/21 Crushed Aggregate Base Course, P-2	Ind Transformer. Protect Can Image: Comparison of Comp	nd Transformer. Protect Can Remove and Salvage Elevated Threshold Light Fixture and 2 days Tue 6/29/21 Wed 6/30/21 Tue 6/29/21 Tue 6/29/21 Tue 6/29/21 Tue 6/29/21 Tue 6/29/21 Tue 6/29/21 Tue 7/6/21 Demolish MALSF Threshold Bar (13 Lights). Salvage 3 days Demolish MALSF Cherterline Bars (5 Lights Each). 4 days Sat 7/3/21 Tue 7/6/21 Demolish MALSF Cherterline Bars (5 Lights Each). 4 days Sat 7/3/21 Tue 7/6/21 Demolish MALSF Cherterline Bars (5 Lights Each). 4 days Demolish MALSF Cherterline Bars (5 Lights Each). 4 days Demolish AMALSF Cherterline Bars (5 Lights Each). 4 days Demolish AMALSF Cherterline Bars (5 Lights Each). 4 days Demolish AMALSF Cherterline Bars (5 Lights Each). 4 days Demolish Abandoned Waterline, if Encountered 2 days Thu 7/1/21 Fri 7/2/1 Inclassified Excavation and Hau-Off 10 days Thu 7/1/21 Sat 7/10/21 misahkment in Place 16 days True 7/6/21 Wed 7/21/21 Jace Asphalt Compacted Grindings, 24-inches thick 7 days Wed 6/30/21 Tue 7/6/21 Ime Treated Subgrade, 16-inch Depth (1st Mix) 16 days True 7/13/21 Sat 7/13/21 Ime Treated Subgrade, 16-inch Depth (2nd Mix and 16 days True 7/13/21 Sat 7/13/21 Jace Asphalt Compacted Grindings, 24-inches thick 7 days Wed 7/28/21 Tue 8/24/21 Ime Treated Subgrade, 16-inch Depth (2nd Mix and 16 days True 7/16/21 Sat 7/31/21 Jack Stabilization, Excavation Below Subgrade 16 days True 7/16/21 Sat 7/31/21 Tue 8/24/21 Tue 8/24/21 Tue 8/24/21 Tue 8/24/21 Tue 8/24/21 Tue 8/24/21 Tue 8/24/21 Tue 8/24/21 Tue 8/24/21 Stabilt Concrete Surface Course, P-401 (Control Strip #1) 1 day Wed 8/18/21 Wed 8/1	Ind Transformer. Protect Can Image and Skrage levated Threshold Light Fixture and 2 days Tue 6/29/21 Wed 6/30/21 Temove and Skrage levated Threshold Light Fixture and 2 days Tue 6/29/21 Tue 6/29/21 Tue 6/29/21 Temove and Skrage levated Threshold Light Fixture and 2 days Tue 6/29/21 Tue 6/29/21 Tue 6/29/21 Demolish MAISF Threshold Bar (13 Lights). Salvage 3 days Wed 6/30/21 Fri 7/2/21 Demolish Admotored Tornet Alandoned 1 day Wed 7/7/21 Wed 7/7/21 Demolish Admotored String Fixtures 2 days Thu 7/1/21 Fri 7/2/1 Junclassified Excavation and Haul-Off 1 day Wed 6/30/21 Tri 7/2/21 Junclassified Excavation and Haul-Off 1 days Sat 7/3/21 Mon 7/1/21 Viberade Preparation 1 6 days Tue 7/6/21 Mon 7/1/21 Ime Treated Subgrade, 16-Inch Depth (Control Strip) 1 day Sat 7/3/21 Sat 7/3/21 Ime Treated Subgrade, 16-Inch Depth (2nd Mix and 16 days Fri 7/16/21 Sat 7/3/21 Junclassified Excavation Below Subgrade 16 days Fri 7/16/21 Sat 7/3/21 Junche Aggregate Base Course, P-209 (Control Strip) 1 day Wed 7/28/21 Tue 8/24/21	Ind Transformer. Protect Can ue 6/29/21 Wed 6/30/21 Tremove and Shavage In-pavement Runway Edge Light 1. day Tue 6/29/21 Tue 6/29/21 Muteriour and Transformer. Protect Can 3 days Wed 6/30/21 Ture 6/29/21 Demolish MAIST Threshold Bir (13 Lights). Sulvage 3 days Wed 6/30/21 Fir 7/2/21 Demolish MAIST Threshold Bar (5 Lights Each). 4 days Sat 7/3/21 Ture 7/6/21 Demolish Mandoned Waterline, If Encountered 2 days Thu 7/1/21 Sat 7/3/21 Demolish Mandoned Waterline, If Encountered 2 days Thu 7/1/21 Sat 7/3/21 Diradationed Waterline, If Encountered 2 days Thu 7/1/21 Sat 7/3/21 Diradationed Waterline, If Encountered 2 days Ture 7/6/21 Wed 7/21/21 Diradationed Waterline, If Encountered 2 days Ture 7/6/21 Wed 7/221 Diradationed Waterline, If Encountered 16 days Fir 7/2/21 Sat 7/3/21 Ime Treated Subgrade, 16-inch Depth (2nd Mix and 16 days Fir 7/2/21 Sat 7/3/21 Ime Treated Subgrade, 16-inch Depth (2nd Mix and 16 days Fir 7/2/21 Sat 7/3/21 Ture Hake Aggregate Base Course, P-209 (Control Strip #1)	nd Transformer. Protect Can tennova and Stangke Evented Threshold Light Future and 2 days tennova and Stangke Evented Threshold Light Future and 2 days tennova and Stangke Evented Threshold Light Future and 2 days tennova and Stangke Evented Threshold Light Future and 2 days tennova and Stangke Evented Threshold Bar (112 Lights, Salvage advect Stang Futures tennova and Stangke Tennova Tennova Tennova tennova and Stangke Tennova Tennova tennova and Stangke Tennova Tennova tennova and Stangke Tennova Tennova tennova Tennova tennova Tennova tennova Tennova tennova Tennova tennova Tennova tennova tennova Tennova tennova tennova Tennova t	nd Transformer, Protect Can. ine 6/29/21 Weef 6/30/21 transformer, Protect Can. i day Use 6/29/21 Tue 6/29/21 transformer, Protect Can. i day Veef 6/30/21 Fi 70/21 transformer, Protect Can. i day Veef 6/30/21 Fi 70/21 transformer, Protect Can. i day Veef 6/30/21 Fi 70/21 transformer, Protect Can. i day Veef 6/30/21 Fi 70/21 straing Finatures i day Veef 6/30/21 Tue 7/9/21 straing Finatures i day Veef 6/30/21 Tue 7/9/21 straing Finatures i day Wed 7/7/21 Not 7/7/21 straing Finatures i day Wed 7/7/21 Not 7/7/21 straing Finatures i day Not 7/7/21 Not 7/2/21 straing Finatures i day Not 7/7/21 Not 7/2/21 straing Finatures i day Not 7/7/21	nd Transformer, Protect Can ve 6/39/21 Werd 6/30/221 ve 6/39/21 Werd 6/30/221 rei 6/39/21 Werd 6/30/21 Werd 7/1/21 Werd 7/1/21 Set 7/3/21 Werd 7	init Transformer. Protect Cian init Protect Original Utility Future and 2 days The 6/23/21 interview and Skinges Utility Skinger 3 days Web 6/30/21 ine 6/23/21 interview and Skinger 4 mores Skinger 5 days Web 6/30/21 interview and Skinger 5 curvicities fars (5 Lights Skinger 3 days) Web 6/30/21 ine 7/6/21 interview and Skinger 5 curvicities fars (5 Lights Skinger 3 days) Web 7/7/21 ine 7/6/21 individual Skinger 5 curvicities fars (5 Lights Skinger 3 days) Web 7/7/21 ine 7/6/21 individual Skinger 5 curvicities fars (5 Lights Skinger 3 days) Skinger 5 days Skinger 5 days individual Skinger 5 curvicities fars (5 Lights Skinger 3 days) Skinger 7/7/21 ine 7/6/21 individual Skinger 5 days Skinger 5 days Skinger 7/7/21 individual Skinger 5 days Skinger 7/7/21 Skinger 7/7/21 individual Skinger 5 days Skinger 7/7/7/21 Skinger 7/7/21	In Standbarder, Protect Can Toe (732)11 Toe (732)11<	Markanowski Alike Markanowski Alike Markanowski Alike Markanowski Alike Markanokalike Markanowski Alike	Mat Parameters Nover(2 can be needed in Franchise Units Fra	unit hardword i unit unit unit unit hardword i unit unit unit unit unit i unit unit

Page 1

											Μ	on	3/29/21
	13		18	23		0ct 28	tober 2	021 3	8	13		18	23
				 					 				-1
				—									
idline		4	F	Ma	inual Pro	ogress			_				
gress				-									


						r	Kunwa	y 1-23,	IdXIW	ay Com	nector	s, and Pa	irallel I	axiway	avenier	IL RECO	instruct	1011110		ase biu							Mor	on 3/2	
Task N	Name	Duration	Start	Finish	15	20	25	July 2021 30	5	10	15	20	25	August 2021	9	14	19	24	Septemb	er 2021	8 13	18	22	Octo 28	ber 2021	8	13 18	18	
16	12-inch RCP, Class IV, outside Pavement Areas	5 days	Tue 6/29/21	Sat 7/3/21	15	20					13	20		30 4		14	13	24	23	3	0 13	10	23	20		0	15 10	10	
,	12-inch PCP Class IV within Payament Areas	2 days	Mon 7/5/21	Tue 7/6/21					_																				
	, ,																												
	Underdrain Pipe Cleanouts	12 days																											
)	48" Stormdrain Manholes	8 days	Tue 6/29/21	Tue 7/6/21																									
1	Adjust Catch Basin to Grade	1 day	Thu 7/1/21	Thu 7/1/21																									
52	Connect to Existing Manholes/Basins	8 days	Tue 6/29/21	Tue 7/6/21			\$																						
	Bank or Conduit										•																		
	57		16 days	Wed 7/14/21	Thu 7/29/21																								
	61		4 days	Fri 7/9/21	Mon 7/12/21																								
		Conduit		Fri 7/9/21	Mon 7/12/21																								
		4 days	Fri 7/9/21	Mon 7/12/21					h																				
		1 day																											
		2 days								- └┼┼┼ ┦																			
	Adjust Junction Can to Grade	1 day								4																			
																													
												Ť	1																
	Construct New L-858B(L) Distance Remaining Sign and																												
72	Construct New L-858(L) Taxiway Guidance Sign without	4 days	Wed 7/14/21	Sat 7/17/21						-	-																		
73		13 days	Mon 7/5/21	Sat 7/17/21							_																		
74	Adjust Base Can for New L-852D(L) In-Pavement Runway	2 days	Fri 7/9/21	Sat 7/10/21																									
75	Adjust Base Can for New L-861E(L) Runway Threshold	13 days	Mon 7/5/21	Sat 7/17/21				F																					
76	Adjust Base Can for Salvaged Elevated Taxiway Edge Ligh	t 7 days	Mon 7/19/21	Sun 7/25/21																									
77	Install ID Tag	5 days	Mon 9/6/21	Fri 9/10/21																									
/8	Install Salvaged REILs on New Concrete Pad	2 days		Tue 7/20/21							+																		
	Shoulder Finishing and Miscellanous Grading	6 days	Fri 9/3/21	Wed 9/8/21																	7								
																			L										
	•																			\downarrow									
																					•								
																				ſ.									
																				4	+								
		-																											
																										•			
91	Marking, 2 Coats with Beads (Second Coat)	5 davs	Mon 10/18/21	Fri 10/22/21																									
																											L		
Project: Com	nolate Project Sched	Milestone	•	Drojact Sur	nman/		Inactive M	Ailestone	•	Manual Ta	.ck		Manual Summ	any Rollup	Ctart	-only	r	Evternal T	asks		Deadline	Ŧ		Manual Progress					
									~							-						*		widriudi Progress					
ate: Mon 3					310		inactive 5	unnary		. Duration c		28	Wanuai Summ	ary 🛯	I FINIS	h-only		External N	Allestone	~	Progress								

D Task Na	me	Duration	Start	Finish	15	20	ər	July 202 30	21	10	15	20	25	August 2021	9	14 .		Septembe	er 2021	
	ay 7-25, Taxiway Connectors, and Parallel Taxiway nent Reconstruction (Base Bid + Bid Alt 1)	124 days	Mon 6/28/21	Fri 10/29/21	15	20	25	30	5	10	15	20	25	30 4	9	14 19	24	29	3 8	—
2 Con	struction Element	124 days	Mon 6/28/21	Fri 10/29/21																
Р	hase 1	98 days	Mon 6/28/21	Sun 10/3/21	-		· · · · · ·													_
1	Airfield Safety and Traffic Control	1 day	Mon 6/28/21	Mon 6/28/21	-															
5	Compliance with Pollution, Erosion, and Siltation Control	3 days	Mon 6/28/21	Wed 6/30/21				h												
5	Airport Access and Haul Route Repair	2 days	Tue 9/14/21	Wed 9/15/21	-															
	Underground Utility Investigation and Potholing	2 days	Tue 6/29/21	Wed 6/30/21	-															
	Demolish Asphalt Pavement	7 days	Tue 6/29/21	Mon 7/5/21																
9	Asphalt Crack Repair (under 1.5" width)	2 days	Wed 7/7/21	Thu 7/8/21	-															
)	Asphalt Crack Repair (over 1.5" width)	4 days	Wed 7/7/21	Sat 7/10/21	-															
1	Remove Airfield Marking		Thu 7/1/21	Fri 7/2/21	-			_												
	-	2 days			-															
2	Cold Mill, Variable Depth (2 inches Maximum)	1 day	Tue 7/6/21	Tue 7/6/21																
8	Remove and Salvage REILs. Demolish PCC Foundation	1 day	Thu 7/1/21	Thu 7/1/21																
+	Demolish Conduit, Cable, and Counterpoise	16 days	Fri 7/2/21	Sat 7/17/21				^												
	Demolish Concrete Encased Conduit, Cable, and Counterpoise	5 days	Fri 7/2/21	Tue 7/6/21					•											
	Remove Cable and Counterpoise	3 days	Tue 6/29/21	Thu 7/1/21	-															
		1 day	Sat 7/17/21	Sat 7/17/21	-			Г												
_	Remove and Salvage Unlit Information Sign. Demolish	1 day	Sat 7/17/21	Sat 7/17/21	-															
_	Concrete Pad		/= /= -	/- /																
_		1 day	Fri 7/2/21	Fri 7/2/21	_															
	Demolish Electrical Pullboxes	16 days	Fri 7/2/21	Sat 7/17/21				•												
	Demolish Airfield Sign and Pad	16 days	Fri 7/2/21	Sat 7/17/21				•												
	Remove and Salvage Elevated Runway Edge Light Fixture and Transformer. Protect Can	2 days	Tue 6/29/21	Wed 6/30/21			×-*		ן ך											
	Remove and Salvage Elevated Threshold Light Fixture and Transformer. Protect Can	2 days	Tue 6/29/21	Wed 6/30/21																
	Demolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture	16 days	Fri 7/2/21	Sat 7/17/21	-															
-	Demolish Elevated Runway Edge Light and Can. Salvage	1 day	Thu 7/1/21	Thu 7/1/21	-															
	Existing Fixture. Demolish In-pavement Taxiway Edge Light and Can.	2 days	Fri 7/2/21	Sat 7/3/21																
,	Salvage Existing Fixture. Demolish In-pavement Runway Edge Light and Can.	1 day	Mon 7/5/21	Mon 7/5/21	-															
	Salvage Existing Fixture.																			
	Demolish MALSF Threshold Bar (13 Lights). Salvage Existing Fixtures	3 days	Wed 6/30/21	Fri 7/2/21																
	Demolish 3 MALSF Centerline Bars (5 Lights Each). Salvage Existing Fixtures	4 days	Sat 7/3/21	Tue 7/6/21																
)	Demolish Reinforced Foundation from Abandoned MALSF Bar	1 day	Wed 7/7/21	Wed 7/7/21																
1		7 days	Fri 7/2/21	Thu 7/8/21																
2	Unclassified Excavation and Haul-Off		Thu 7/1/21	Wed 7/14/21	-															
		14 days			-															
_	Embankment in Place	10 days	Wed 7/7/21	Fri 7/16/21							₹¥									
_	Subgrade Preparation	19 days	Fri 7/2/21	Tue 7/20/21	-															
	Place Asphalt Compacted Grindings, 24-inches thick	7 days	Wed 6/30/21	Tue 7/6/21																
	Lime Treated Subgrade, 16-inch Depth (Control Strip)	1 day	Sat 7/3/21	Sat 7/3/21	-															
	Lime Treated Subgrade, 16-inch Depth (1st Mix)	21 days	Tue 7/6/21	Mon 7/26/21																
		21 days	Tue 7/13/21	Mon 8/2/21	-				4											
)	Compact) In-Place Drying Techniques	19 days	Fri 7/2/21	Tue 7/20/21								_								
		25 aays		140 //20/21																
	Task	Summary	,	Inactive	Milestone	\$		Durati	on-only			Start-only		C	External N	lilestone	\$	Manual P	ogress	_
	blete Project Sched	,				· · · · · · · · · · · · · · · · · · ·				Pollum						mestone	•	ivianual P	ogress	
e: Mon 3/2		Project Summ	lary I		Summary	d			al Summary I			Finish-on		3	Deadline		✓			
	Milestone 🔶	Inactive Task		Manual	Task			Manua	al Summary			External 1	i asks		Progress					

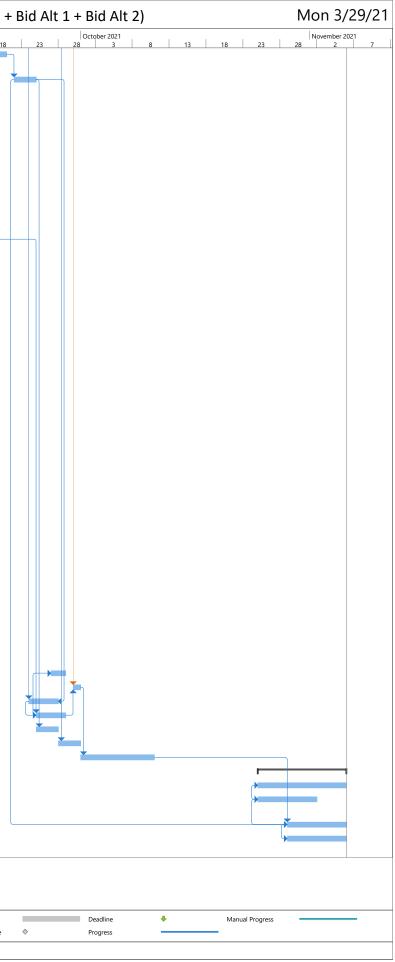
e	Bi	d +	Bi	id /	Alt						Mc	n	3/29/21
3		18		23		Octo 28	ber 2021 3	8	13	18	23		November 20 28 2
									 		 		-
							1						

					ay 7-25, Ta										<u></u>			ia / (ie ±)			Mon 3	/29/
Task I	Name	Duration	Start	Finish	15 20	July 2021 25 30	5 10	15	20	Auc 25 30	ust 2021 4	9 1	4 19	24 29	September 2021	8 13	18	23 28	October 2021 3	8 13	18 23 28	Noven
0	Subgrade Stabilization, Excavation Below Subgrade	21 days	Fri 7/16/21	Thu 8/5/21																		
1	Multi-Axial Geogrid	21 days	Fri 7/16/21	Thu 8/5/21																		
2	Crushed Aggregate Base Course, P-209 (Control Strip)	1 day	Tue 7/20/21	Tue 7/20/21																		
3	Crushed Aggregate Base Course, P-209 (Pavement Section)	34 days	Sat 7/24/21	Thu 8/26/21																		
4	Crushed Aggregate Base Course, P-209 (Shoulders)	34 days	Sat 7/24/21	Thu 8/26/21					}													
5	Asphalt Concrete Surface Course, P-401 (Control Strip #1) 1 day	Sat 8/14/21	Sat 8/14/21																		
;	Asphalt Concrete Surface Course, P-401 (Control Strip #2) 1 day	Sat 8/21/21	Sat 8/21/21																		
	Asphalt Concrete Surface Course, P-401 (First Lift)	6 days	Sat 8/28/21	Thu 9/2/21																		
3	Asphalt Concrete Surface Course, P-401 (Second Lift)	6 days	Sat 9/4/21	Thu 9/9/21																		
9	Install 2 Runway Threshold Monuments	1 day	Fri 9/10/21	Fri 9/10/21												*						
	12-inch RCP, Class IV, outside Pavement Areas	5 days	Thu 7/1/21	Mon 7/5/21		│ │																
-	12-inch RCP, Class IV, within Pavement Areas	2 days	Tue 7/6/21	Wed 7/7/21																		
	Underdrain Pipe, 6-inch, Perforated	15 days	Wed 7/21/21	Wed 8/4/21				(
;	Underdrain Pipe Cleanouts	15 days	Wed 7/21/21	Wed 8/4/21							•											
	48" Stormdrain Manholes	7 days	Thu 7/1/21	Wed 7/7/21																		
	Catch Basin/Drop Inlet	1 day	Sat 7/3/21	Sat 7/3/21																		
	Adjust Catch Basin to Grade	1 day	Mon 7/5/21	Mon 7/5/21																		
	Connect to Existing Manholes/Basins	7 days	Thu 7/1/21	Wed 7/7/21																		
	Utility Protection	8 days	Mon 7/5/21	Mon 7/12/21																		
	No. 8 AWG 5 kV, L-824, Type C Cable, Installed in Duct Bank or Conduit	8 days	Thu 8/5/21	Thu 8/12/21																		
	No. 6 AWG Tinned Counterpoise Wire, Installed Adjacent to Duct Bank or Conduit	: 31 days	Sat 7/24/21	Mon 8/23/21					-													
	No. 6 AWG Tinned Counterpoise Wire, Installed in Duct Bank or Conduit	17 days	Mon 7/26/21	Wed 8/11/21					-			-										
2	No. 1/0 AWG Tinned Counterpoise Wire for MALSF, Installed Adjacent to / In the Duct Bank or Conduit	16 days	Wed 7/14/21	Thu 7/29/21																		
3	No. 2-8 AWG 600V, L-824, Type THWN-2 Cable for MALSF, Installed in Duct Bank or Conduit	16 days	Wed 7/14/21	Thu 7/29/21																		
	Concrete Encased Electrical Duct Bank, 1W - 2" Conduit	5 days	Thu 7/29/21	Mon 8/2/21																		
	Concrete Encased Electrical Duct Bank, 3W - 2" Conduit	5 days	Thu 7/29/21	Mon 8/2/21							₩J											
	Concrete Encased Electrical Duct Bank, 1W - 2" GRMC Conduit	16 days	Wed 7/14/21	Thu 7/29/21			>															
	Non-encased Electrical Duct Bank, 1W - 2" Conduit	14 days	Wed 7/28/21							•												
	Non-encased Electrical Duct Bank, 2W - 2" Conduit	14 days	Wed 7/28/21																			
)	Non-encased Electrical Duct Bank, 3W - 2" Conduit	1 day		Wed 8/11/21																		
	Non-encased Electrical Duct Bank, 1W - 3" and 1W - 2" Conduit		Mon 7/26/21						•													
	Non-encased Electrical Duct Bank, 1W - 3" and 2W - 2" Conduit		Mon 7/26/21							•												
2	Non-encased Electrical Duct Bank, 1W - 3" and 3W - 2" Conduit		Mon 7/26/21						>													
3	Concrete Encase Existing FAA Line Under Proposed Pavement	5 days	Thu 7/15/21	ivion 7/19/21																		
niect: Cor	mplete Project Sched	Summary	· · · ·	Inactive N	lestone 🔶	Duration-or	nly		Start-only	C		External M	estone 🔶		Manual Progress							
	3/29/21 Split	Project Sum	mary	Inactive S	mmary	Manual Sur	nmary Rollup		Finish-only	2		Deadline	+									
	Milestone •	Inactive Tas	<	Manual T	sk	Manual Sur	nmary		1 External Tas	iks		Progress										

Concrete Listed Listing PAA.Une Outside Prevenent 1 10 <	[Tack Name	D	Ctort	Finish				1					1					1	
N Constract Electrical Publics: Argent Reted 6.665 N Constract Mark Null Bas 7.665 N Constract Mark Null Bas 1.665 Mar 7/2/21		Task Name	Duration	Start	Finish	15	20	25	July 2021 30	5	10	15	20	Au 25 30	igust 2021 4	9	14	19	24 29	September 202 3
No. Constant, NA: Publishe 1 4pp Table 77,62/2 No. Constant, NA: Publishe 1 4pp Str 72,62/2 No. Constant, SA: SAID Constants have 1 4pp Str 72,62/2 No. Constant, SAID Constants have 7 4pp Str 72,62/2 No. Constant, SAID Constants have 7 4pp Str 72,62/2 No. Constant, SAID Constants have 7 4pp Str 72,62/2 No. Constant, SAID Constants have 7 4pp Str 72,62/2 No. Constant, SAID Constants have 5 4pp Nor 71,72/2 No. Constant, SAID Str Saing Gold Constant, Pape Pir 72,72/2 Pir 72,72/2 No. Constant, Nor 4, SSID States, Song Constant, Pape 5 4pp Nor 71,72/2 Pir 72,72/2 No. Constant, Nor 4, SSID States, Constant, Pape 5 4pp Nor 71,72/2 Pir 72,72/2 Nor Marcell, Nor 4, SSID States, Constant, Nor Constant, Pape 5 4pp Nor 71,72/2 Pir 72,72/2 Nor Marcell, Nor 4, SSID States, Constant, Nor Constant, Pape 5 4pp Nor 71,72/2 Nor 71,72/2 Nor Marcell, Nor 4, SSID State	74	Concrete Encase Existing FAA Line Outside Pavement	1 day	Tue 7/13/21	Tue 7/13/21															
7 Construct 24 Junctim Construct BBB with UB 2 construct 44 Junctim Construct BBB with UB 2 construct 44 Junctim Construct 4	75	Construct Electrical Pullbox: Aircraft Rated	5 days	Thu 7/29/21	Mon 8/2/21										•					
14 Addual barses from a Golde 4 are 547 20/21 547 20/21 16 Concented MASE Interaction asis 4 asis 147 22/21 147 22/21 16 Concented MASE Interaction asis 4 asis 147 22/21 146 72/22 17 Concented HASE Interaction asis 4 asis 147 22/21 146 72/22 18 Concented How I-Baselity Distance Remaining age and 4 asis 147 72/21 146 72/22 18 Concente How I-Baselity Distance Remaining age and 4 asis 4 on 7/12/21 146 72/21 19 Concente How I-Baselity Distance Remaining age and 4 asis 4 on 7/12/21 146 72/21 10 Concente How I-Baselity Distance Remaining age and 4 ares Mon 7/12/21 167 72/21 10 Concente How I-Baselity Distance Remaining age on Non 7/12/21 167 72/21 156 72/21 17 Interad Subaged Undit Informational Sign on Fastry 1 date 56 77/21/21 56 77/21/21 18 Adapta Base Confin Hers - 442(21) Uncenter Hummer Idate 1 date Mon 7/28/21 158 72/21 18 Concenter How I-Baselity How Money Idate 1 date Mon 7/28/21 168 72/21	76	Construct FAA Pull Box	1 day	Tue 7/13/21	Wed 7/14/21															
79 Contract Add T Winstein Kair 9 Aug Nuk 2/19/21 Nuk 2/19/21 80 Contract Add T Winstein Kair 7 Aug Nuk 2/19/21 Nuk 2/19/21 81 MALSH YCC Linit Time 7 Adg Nuk 2/19/21 Nuk 2/19/21 82 Contract Add T Winstein Vield Patients Sign and J Adm Nuk 2/19/21 Nuk 2/19/21 84 Socontact Kair Media Adm Nuk 7/19/21 Nuk 7/19/21 Nuk 7/19/21 84 Contract Kair Media Adm Nuk 7/19/21 Nuk 7/19/21 Nuk 7/19/21 84 Contract Kair Media Adm Nuk 7/19/21 Nuk 7/19/21 Nuk 7/19/21 85 Contract Kair Media Adm Nuk 7/19/21 Nuk 7/19/21 Nuk 7/19/21 86 Contract Kair Media Adm Nuk 7/12/21 Nuk 7/12/21 Nuk 7/12/21 87 Contract Kair Media Adm Nuk 7/12/21 Nuk 7/12/21 Nuk 7/12/21 88 Contract Kair Media Adm Nuk 7/12/21 Nuk 7/12/21 Nuk 7/12/21 89 Admult Submyrell Girll Information Sign of Buckting and Contract Hard Adm Nuk 7/12/21 Nuk 7/12/21	77	Construct 24" Junction Can: L-868 with Lid	2 days	Sat 7/24/21	Mon 7/26/21															
Ø Output: Abbail: <	78	Adjust Junction Can to Grade	1 day	Sat 7/24/21	Sat 7/24/21															
0 MAXB PCC care time Pathyse No.12/PCC 0 Construct Net VERRAD Dubations Stemaring Start of A 24m Min 7/12/21 No.71/22/1 0 Construct Net VERRAD Dubations Stemaring Start of A 54m Min 7/13/21 Fir/72/21 0 Construct Net VERRAD Tables Start and Construct Start Start Output 54m Min 7/13/21 Fir/72/21 0 Construct Net VERRAD Tables Start Construct Start Start Output 54m Min 7/13/21 Fir/72/21 0 Construct Net VERRAD Tables Start Construct Start Start Output 54m Min 7/13/21 Fir/72/21 0 Construct Net VERRAD Tables Start Construct Start Start Output 64m Min 7/13/21 Fir/72/21 0 Construct Net VERRAD Tables Start Construct Start Start Output 64m Min 7/12/21 Start 7/2/71 0 Adjuit Start Construct Net VERRAD Tables Start Output 14m Min 7/12/21 Start 7/12/1 0 Adjuit Start Construct Net VERRAD Tables Start Min Min 7/12/21 Start 7/12/1 Start 7/12/1 0 Adjuit Start Construct Net VERRAD Tables Start Min Min 7/12/1 Start 7/12/1 No.87/21 0	79	Construct MALSF Threshold Bar	9 days	Wed 7/14/21	Thu 7/22/21															
Image MAGE/PCC Low Time Pering The JB/2/11 Image Construct Meel (SBR0) (Datasce Remaining Sign and Low PC/12/2) The PC/12/21 Image Construct Meel (SBR0) (Datasce Remaining Sign and Low PC/12/2) The PC/12/21 Image Construct Meel (SBR0) (Datasce Remaining Sign and Low PC/12/2) Fr/13/21 Image Construct Meel (SBR0) (Datasce Remaining Sign and Low PC/12/2) Fr/13/21 Image Construct Meel (SBR0) (Datasce Remaining Sign and Low PC/12/2) Fr/13/21 Image Construct Meel (SBR0) (Datasce Remaining Sign and Low PC/12/2) Fr/13/21 Image Construct Meel (SBR0) (Datasce Remaining Sign and Low PC/12/2) Fr/13/21 Image Construct Meel (SBR0) (Datasce Remaining Sign and Low PC/12/2) Str 72/2/21 Image Construct Meel (SBR0) (Datasce Remaining Meel 2) Str 72/2/21 Image Construct Meel (SBR0) (Datasce Remaining Meel 2) Str 72/2/21 Image Construct Meel (SBR0) (Datasce Remaining Meel 2) Str 72/2/21 Str 72/2/21 Image Construct Meel (SBR0) (Datasce Remaining Meel 2) Str 72/2/21 Str 72/2/21 Image Construct Meel (SBR0) (Datasce Remainit Meer 2) Str	80	Construct 3 MALSF Centerline Bars	7 days	Fri 7/23/21	Thu 7/29/21	_							+							
0 Contract, New 1458 (Univery, Hord Position Sign and Signs) Avery, Sub 1713/21 10 Contract, New 1458 (Univery, Hord Position Sign and Signs) Signs) Mon 713/21 11 Contract, New 1458 (Univery, Hord Position Sign and Signs) Signs) Mon 713/21 12 Contract, New 1458 (Univery, Hord Position Sign and Signs) Signs) Mon 713/21 12 Contract, New 1458 (Univery, Hord Position Control Position Signs) Adaps Mon 713/21 12 Contract, New 1458 (Univery, Hord Position Control Position Signs) Adaps Mon 713/21 13 Contract, New 1458 (Univery, Hord Position Signs) Signs) Mon 775/71 No 775/71 14 Instant Social Mon Hord Position Signs) Mon 775/71 Signs 7/17/21 Signs 7/17/21 13 Contract, New 1458 (Univery, Hord Hord Signs) Mon 775/71 No 775/71 No 775/71 14 Hord Social Mond Hord Hord Hord Hord Hord Hord Hord Hor	81					-								•						
Concent priod Concent priod Steps Mar 719/21 Fr 7172/3/1 0 Concent priod Steps Mar 719/22 Fr 7172/3/1 0 Stratus (Mar el -SBN) (Takiway (Mark 1968) Segue) Segue Mar 719/22 Fr 7172/3/1 0 Stratus (Mark 1-SBN) (Takiway (Mark 1968) Segue) Segue Mar 719/22 Fr 7172/3/1 0 Stratus (Mark 1-SBN) (Takiway (Mark 1968) Segue) Segue Mar 719/22 Fr 7172/3/1 0 Stratus (Mark 1-SBN) (Takiway (Mark 1968) Segue) Segue Mar 719/22 Segue (Mark 1/SN) (Segue (Mark 1/SN) (Segue (Mark 1/SN)) 0 Install Swaged Unit Informational Sgn on Distrat Segue Mar 719/21 Seg 717/2/1 0 Install Swaged Unit Informational Sgn on Distrat Segue Mar 719/21 Seg 717/21 0 Lague Sac Can Ch Wei L-SBN (Takiway Mark 199/2) Segue (Mar 719/21) Segue (Mar 719/21) Segue (Mar 719/21) 0 Lague Sac Can Ch Wei L-SBN (Takiway Mark 199/2) Segue (Mar 719/22) Segue (Mar 719/22) Seg 717/21 0 Lague Sac Can Ch Wei L-SBN (Takiway Mark 199/2) Segue (Mar 719/22) Seg 717/21 Se						_														
Concept Pad Concept Pad One Name I Concept Pad Samp Mon 7/3/21 Fr/7/2/12 I Construct New L-3581[Taxwary Guidance Sign, Double Arrow, with Tawkary Headling and Concept Pad Samp Mon 7/3/21 Fr/7/2/12 I Construct New L-3581[Tawwar Guidance Sign, without Tawwary Headling and Concept Pad Samp Mon 7/3/21 Fr/7/2/12 I Toward Samped Unit Hormatorial Sign on Faster Tawwary Headle Unit Hormatorial Sign on Headle Concept 1 J. Samp Mon 7/2/21 Kar 7/3/21 J Construct New L 48:11 J. Houdra Haumary Headle J. Headle Hand Long J. Samp Mon 7/2/21 Kar 7/3/21 Kar 7/3/21 J Construct New L 48:11 J. Houdra Haumary Headle J. Headle Handle Long J. Samp Mon 7/2/21 Kar 7/3/21 Kar 7/3/21 J Construct New L 48:11 J. Houdra Haumary Headle J. Headle Handle Long J. Samp Mon 7/2/21 Kar 7/3/21		Concrete Pad								ľ										
Image: Ancoor, with Taskway identifier and Concrete Nation (Construction New Casses) Taskway identifier and Nation (Construction New Casses) Ta		Concrete Pad	· ·																	
Image: Arrow, with Taxiway Identifier and Concrete Pad Image: Construct New U-802(1) Taiways Udentifier and Concrete Pad Image: Construct New U-802(1) Taiways Udentifier and Concrete Pad Image: Concrete Pad Image: Concrete Pad Image: Concrete Pad Image: Concrete Pad Image: Concrete Pad Mon 7726/21 Image: Concrete Pad Image: Concrete Pad Mon 7726/21 Str 717/21 Image: Concrete Pad Image: Concrete Pad Mon 7726/21 Str 717/21 Image: Concrete Pad Image: Concrete Pad Image: Concrete Pad Mon 7726/21 Image: Concrete Pad Image: Concrete Pad Mon 7726/21 Str 7177/21 Image: Concrete Pad Image: Concrete Pad Image: Concrete P	84		5 days	Mon 7/19/21	Fri 7/23/21							>								
Install Subged full informational Sign on Data Sign on New Concrete 1 day Non 7/28/21 Mail Concrete Paid Install Subged Full Informational Sign on New Concrete 1 day Non 7/28/21 Mail Concrete Paid Adjust Base Can (In New L-862)(L] Elevated Rumwy Edge 13 days Non 7/28/21 Mail Construct New L-862)(L] Elevated Rumwy Edge 13 days Non 7/28/21 Won 7/28/21 Mail Construct New L-862)(L] Elevated Rumwy Edge 12 days Non 7/28/21 Won 7/28/21 Mail Subsec Con (In New L-862)(L] Elevated Rumwy Edge 12 days Non 7/28/21 Wed 7/28/21 Sign Construct New L-862)(L] Elevated Rumwy Edge 12 days Non 7/28/21 Wed 7/28/21 Sign Construct New L-862)(L] Elevated Rumwy Edge 12 days Non 7/28/21 Wed 7/28/21 Sign Construct New L-862)(L] Elevated Rumwy Edge 12 days Non 7/2/21 Tue S/2/21 Sign Construct New L-862)(L] Elevated Rumwy Edge 12 days Non 7/2/21 Tue S/2/21 Sign Construct New L-862)(L] Elevated Rumwy Edge 12 days Non 7/2/21 Tue S/2/21 Sign Construct New L-862)(L] Elevated Rumwy Edge 12 days Non 7/2/21 Tue S/2/21 Sign Construct New L-862)(L] Elevated Rumwy Edge 12 days Non 7/2/21 Tue S/2/21 <td>85</td> <td></td> <td>5 days</td> <td>Mon 7/19/21</td> <td>Fri 7/23/21</td> <td></td>	85		5 days	Mon 7/19/21	Fri 7/23/21															
Concrete Fusi Concrete Fusi Concrete Fusi Concrete Fusi 0 Install Shoped Utili Informational Sign on New Concrete I at yor Paral Mon 7/26/21 Mon 7/26/21 Mon 7/26/21 00 Adjust Base Can for New LBSL(1) Elevated Runway tage Light and Transforme 13 days Mon 7/26/21 Star 7/17/21 10 Construct New LBSL(1) Elevated Runway tage Light and Transforme 13 days Mon 7/26/21 Wel 7/28/21 17 Construct New LBSL(1) Elevated Runway tage Light and 2 days Mon 7/26/21 Wel 7/28/21 Wel 7/28/21 18 Construct New LBSL(1) Multium Intensity Flexued 14 days Wel 7/28/21 Wel 8/12/21 19 Construct New LBSL(1) Multium Intensity Prevenent Light and Base Can 12 days Mon 8/2/21 Ive 8/3/21 19 Construct New LBSL(1) Multium Intensity Prevenent Light and Base Can 12 days Mon 9/3/21 Fi18/20/21 10 Install DT Tig Gays Fris/1/11 Wel 9/15/21 Fi18/20/21 10 Install DT Tig Gays Mon 9/20/21 Thu 9/22/21 Star 9/11/21 10 Install MAstr Ligh Flextores days Mo	86		4 days	Wed 7/14/21	Sat 7/17/21															
Pad Pad Pad Pad Image: Pad Applies Boar Cinfor New L-851(1) Elevated Rumway Threshold 31 days Non7/5/21 Str 7/17/21 Image: Pad Adjust Base Cinfor New L-851(1) Elevated Rumway Threshold 31 days Non7/5/21 Str 7/17/21 Image: Pad Construct New L-851(1) Elevated Rumway Threshold 31 days Non 7/5/21 Str 7/17/21 Image: Pad Construct New L-851(1) Elevated Rumway Threshold 2 days Non 7/5/21 Wed 7/28/21 Image: Pad Construct New L-851(1) Elevated Rumway Threshold 2 days Non 8/722 Tue 8/0/21 Image: Pad Construct New L-851(1) Elevated Rumway Threshold 2 days Non 8/722 Tue 8/0/21 Image: Pad Construct New L-851(1) Elevated Rumway Threshold 2 days Non 8/722 Fils/20/21 Image: Pad Tarway Of Edge Uelt and Base Can Construct New L-851(1) Elevated Rumway And Pade Pade Pade Pade Pade Pade Pade Pad	87		1 day	Sat 7/24/21	Sat 7/24/21	_							•							
98 Adjust Base Can for New L-861[L] Elevated Runway Edge 13 days Non 7/5/21 Sat 7/17/21 90 Adjust Base Can for New L-861[L] Runway Thresholl 13 days Mon 7/5/21 Sat 7/17/21 91 Construct New L-861[L] Elevated Runway Edge Light and 2 days Mon 7/5/21 Wef 7/28/71 92 Construct New L-861[L] Medum Intensity Flevated 2 days Mon 7/5/21 Wef 7/28/71 93 Construct New L-861[L] Medum Intensity Flevated 2 days Mon 7/5/21 Wef 7/28/71 94 Construct New L-861[L] Medum Intensity Flevated 2 days Mon 7/5/21 Wef 7/28/71 95 Install Maxing Edge Light and Base Can 2 days Mon 7/70/21 Fil 8/20/21 96 Install Shvaged RLIs on New Concrete Pad 2 days Mon 7/70/21 Tur 7/70/21 97 Install Maxing Hrintrus 6 days Yef 9/10/21 Tur 7/70/21 98 Shoulder Finishing and Muscellanous Grading 6 days Yef 9/10/21 Yef 9/10/21 99 Install Maxing Light Finitures 6 days Yef 9/10/21 Yef 9/10/21 100 Install Maxing Light Finitures 8 days Yef 9/10/21 Yef 9/10/21	88		e 1 day	Mon 7/26/21	Mon 7/26/21								+							
Light and Transformer Light Ref Ref 1 Construct New LeSD(L) Elevated Runway Edge Light and 2 days Mon 7/26/21 Wed 7/28/21 22 Construct New LeSD(L) In-Pavement Runway Edge Light and 2 days Mon 8/2/21 Tue 8/3/21 32 Construct New LeSD(L) In-Pavement Runway Edge Light and Base Can Adays Wed 7/28/21 33 Construct New LeSD(L) Medium Intensity Elevated Adays Wed 7/28/21 44 Construct New LeSD(L) Medium Intensity In-Pavement 12 days Mon 8/9/21 Tue 8/10/21 55 Install ID Tag 6 days Fri 9/10/21 Wed 9/15/21 56 Install Salvaged RELs on New Correte Pad 2 days Mon 7/15/21 57 Change Sign Legrend 4 days Wed 9/15/21 58 Install Salvaged RELs on New Correte Pad 2 days Mon 7/15/21 59 Install MALSE Ingencions 1 days Yed 9/15/21 59 Install MALSE Ingencions 4 days Wed 9/15/21 50 Install Runway and Taxiway Light Fixtures 8 days Wed 9/15/21 50 Install Runway and Taxiway Lig	89	Adjust Base Can for New L-861(L) Elevated Runway Edge	13 days	Mon 7/5/21	Sat 7/17/21															
Base Can Base Can Base Can Base Can 22 Light and Base Can Construct New L832D(1) In-Pawement Rumwy Edge 2 days Mon 8/2/21 Tue 8/3/21 33 Construct New L-B61T(1) Medium Intensity Elevated 1 days Wed 7/28/21 Tue 8/3/21 44 Toxiway Edge Light and Base Can Sconstruct New L-B61T(1) Medium Intensity In-Pawement 12 days Mon 8/9/21 Fr 8/20/21 54 Construct New L-B52T(1) Medium Intensity In-Pawement 12 days Mon 8/9/21 Fr 8/20/21 55 Install Dage Gan Base Can 6 days Fri 8/20/21 Tue 9/3/21 56 Install Subaged REILs on New Concrete Pad 2 days Mon 9/13/21 57 Change Sign Legend 6 days Tue 9/12/21 Fri 9/10/21 57 Install MLSF Light Fixtures 8 days Ved 9/15/21 58 Justell MALSF Inspectons 1 day Sri 9/11/21 Fri 9/10/21 50 Install Rumwy and Taxiway Light Fixtures 8 days Fri 9/10/21 Fri 9/10/21 50 Fridt Chack 1 Ddays Fri 9/10/21 Fri 9/10/21 </td <td>90</td> <td></td> <td>13 days</td> <td>Mon 7/5/21</td> <td>Sat 7/17/21</td> <td></td>	90		13 days	Mon 7/5/21	Sat 7/17/21															
22 Construct New L-8520[1] In-Pavement Rurnway Edge Light and Base Can 2 days Mon 8/2/21 Tue 8/3/21 33 Construct New L-8511[1) Medium Intensity IsP-avement Taxiway Edge Light and Base Can 14 days Wed 7/28/21 Tue 8/10/21 44 Construct New L-85211[1) Medium Intensity In-Pavement Taxiway Edge Light and Base Can 12 days Mon 8/9/21 Fr 8/20/21 55 Install ID Tag 6 days Kon 9/19/21 Wed 9/15/21 76 Change Sign Legend 4 days Mon 9/20/21 Twe 9/27/21 77 Change Sign Legend 4 days Wed 9/12/21 Twe 9/10/21 78 Shoulder Finishing and Miscellanous Grading 6 days Wed 9/8/21 Mon 9/13/21 79 Change Sign Legend 4 days Sa 9/11/21 Sat 9/11/21 Sat 9/11/21 70 FAA MALSF Inspections 1 days Sat 9/11/21 Sat 9/11/21 Sat 9/11/21 70 FAA MALSF Inspections 1 days Sat 9/11/21 Sat 9/11/21 Sat 9/11/21 71 Marking, 2 Coats with No Beads (First Coat) 7 days Fri 9/10/21 Twu 9/15/21 710 Filoat 10 days Fri 9/24/21	91		2 days	Mon 7/26/21	Wed 7/28/21								Ç							
93Construct New L-8617(L) Medium Intensity Elevated Taxiway Edge Light and Base Can14 daysWed 7/28/21Tue 8/10/2194Construct New L-8527(L) Medium Intensity In-Pavement Taxiway Edge Light and Base Can12 daysMon 8/9/21Fri 8/20/2195Install ID Tag6 daysFri 9/10/21Wed 9/15/2196Ghashag KElis on New Concrete Pad2 daysMon 7/9/21Tue 7/20/2197Change Sign Legend4 daysMon 7/9/21Tue 7/20/2198Shoulder Finishing and Miscellanous Grading6 daysFiel 9/10/21Tue 9/23/2199Install MALSF Light Fixtures4 daysMon 9/12/21Fri 9/10/21100FAA MALSF Inspections1 daySat 9/11/21Sat 9/11/21111Install Runway and Taxiway Light Fixtures8 daysWed 9/15/21112Marking, 2 Coats with Beads (First Coat)7 daysFri 9/10/21Fiel 9/17/21113Amarking, 2 Coats with No Beads (First Coat)7 daysFri 9/17/21116Flight Check1 dayFri 9/17/21116Flight Check1 daysMon 10/18/21117Sate 2 (Night Choures)12 daysMon 10/18/21118Antrield Safety and Traffic Control12 daysMon 10/18/21119Marking, 2 Coats with Beads (Second Coat)7 daysSat 10/29/21110Marking, 2 Coats with Beads (Second Coat)Fi da/22/21Fri 10/29/21110Marking, 2 Coats with Beads (Second Coat)Fi da/22/21Fri 10/29/21111Mark	92	Construct New L-852D(L) In-Pavement Runway Edge	2 days	Mon 8/2/21	Tue 8/3/21									×						
94 Construct New L-832T(L) Medium Intensity In-Pavement Taxiway Edge Light and Base Can 12 days Mon 8/9/21 Fri 8/20/21 95 Install Datag 6 days Fri 9/10/21 Wed 9/15/21 96 Install Salvaged REILs on New Concrete Pad 2 days Mon 9/20/21 Thu 9/23/21 97 Change Sign Legend 4 days Mon 9/20/21 Thu 9/23/21 98 Install MALSF Light Fixtures 4 days Thu 9/13/21 99 Install MALSF Light Fixtures 4 days Tu 9/13/21 90 Install MALSF Light Fixtures 8 days Wed 9/15/21 100 FAA MALSF Inspections 1 day Sat 9/11/21 Sat 9/11/21 101 Install Runway and Taxiway Light Fixtures 8 days Wed 9/15/21 102 Marking, 2 Coats with Beads (First Coat) 7 days Fri 9/10/21 103 Marking, 2 Coats with Beads (First Coat) 7 days Fri 9/21/21 104 Hydroseeding 3 days Wed 9/15/21 Fri 9/17/21 105 Flight Check 1 day Fri 9/21/21 Sin 10/29/21 106 Float 10 days Fri 9/21/21 <td< td=""><td>93</td><td>Construct New L-861T(L) Medium Intensity Elevated</td><td>14 days</td><td>Wed 7/28/21</td><td>Tue 8/10/21</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	93	Construct New L-861T(L) Medium Intensity Elevated	14 days	Wed 7/28/21	Tue 8/10/21															
95 Install ID Tag 6 days Fri 9/10/21 Wed 9/15/21 96 Install Salvaged REILs on New Concrete Pad 2 days Mon 7/19/21 Tue 7/20/21 97 Change Sign Legend 4 days Mon 9/23/21 Tub 9/23/21 97 Install MALSF Light Fixtures 6 days Wed 9/8/21 Mon 9/13/21 98 Isholder Finishing and Miscellanous Grading 6 days Tue 9/7/21 Fri 9/10/21 99 Install MALSF Light Fixtures 8 days Tue 9/1/21 Fri 9/10/21 100 FAA MALSF inspections 1 day Sat 9/11/21 Sat 9/11/21 101 Install Runway and Taxiway Light Fixtures 8 days Wed 9/8/21 Tub 9/15/21 102 Marking, 2 Coats with No Beads (First Coat) 7 days Fri 9/10/21 Tub 9/15/21 103 Harking, 2 Coats with No Beads (First Coat) 7 days Fri 9/17/21 Fri 9/17/21 104 Hydroseeding 1 day Fri 9/24/21 Sun 10/3/21 Fri 10/29/21 105 Flight Check 1 days Mon 10/18/21 Fri 10/29/21 Sun 10/3/21 106 Arifield Safety and Traffic Control	94	Construct New L-852T(L) Medium Intensity In-Pavement	12 days	Mon 8/9/21	Fri 8/20/21										C					
96 Install Salvaged REILs on New Concrete Pad 2 days Mon 7/19/21 Tue 7/20/21 97 Change Sign Legend 4 days Mon 9/12/21 Thu 9/23/21 98 Shoulder Finishing and Miscellanous Grading 6 days Wed 9/8/21 Mon 9/13/21 99 Install MALSF Light Fixtures 4 days Tue 9/7/21 Fi 9/10/21 100 FAA MALSF Inspections 1 day Sat 9/11/21 101 Install Runway and Taxiway Light Fixtures 8 days Wed 9/15/21 102 Marking, 2 Coats with Beads (First Coat) 7 days Fri 9/10/21 Thu 9/16/21 103 Marking, 2 Coats with No Beads (First Coat) 7 days Fri 9/17/21 Tri 9/17/21 104 Hydroseeding 3 days Wed 9/15/21 Tri 9/17/21 105 Flight Check 10 days Fri 9/24/21 Sun 10/3/21 106 Float 10 days Fri 9/24/21 Sun 10/3/21 107 Phase 2 (Night Cosures) 12 days Mon 10/18/21 Fri 10/29/21 108 Airfield Safety and Traffic Control 12 days Mon 10/25/21 109 Grooving (30 Days after P	95		6 davs	Fri 9/10/21	Wed 9/15/21	_														
97 Change Sign Legend 4 days Mon 9/20/21 Thu 9/23/21 98 Shoulder Finishing and Miscellanous Grading 6 days Wed 9/8/21 Mon 9/13/21 99 Install MALSF Light Fixtures 4 days Tu 9/7/21 Fri 9/10/21 100 FAA MALSF Inspections 1 day Sat 9/11/21 Sat 9/11/21 101 Install Runway and Taxiway Light Fixtures 8 days Wed 9/8/21 Wed 9/15/21 102 Marking, 2 Coats with Beads (First Coat) 7 days Fri 9/10/21 Thu 9/15/21 103 Marking, 2 Coats with No Beads (First Coat) 7 days Fri 9/10/21 Thu 9/15/21 104 Hydroseeding 3 days Wed 9/15/21 Fri 9/17/21 Fri 9/17/21 105 Flight Check 1 day Fri 9/17/21 Fri 9/17/21 Fri 9/17/21 106 Float 10 days Fri 9/24/21 Sun 10/38/21 Fri 10/29/21 107 Phase 2 (Night Chosures) 12 days Mon 10/18/21 Fri 10/29/21 108 Airfield Safety and Traffic Control 12 days Mon 10/25/21 Mon 10/25/21 108 Grooving (30 Days after P-401 p		-				_						¥								
98 Shoulder Finishing and Miscellanous Grading 6 days Wed 9/8/21 Mon 9/13/21 99 Install MALSF Light Fixtures 4 days Tue 9/7/21 Fri 9/10/21 100 FAA MALSF Inspections 1 day Sat 9/11/21 Sat 9/11/21 101 Install Runway and Taxiway Light Fixtures 8 days Wed 9/8/21 Wed 9/8/21 102 Marking, 2 Coats with Beads (First Coat) 7 days Fri 9/10/21 Thu 9/16/21 103 Marking, 2 Coats with No Beads (First Coat) 7 days Fri 9/10/21 Thu 9/16/21 104 Hydroseeding 3 days Wed 9/15/21 Fri 9/17/21 105 Flight Check 1 day Fri 9/12/21 Sun 10/3/21 106 Float 10 days Fri 9/24/21 Sun 10/3/21 107 Phase 2 (Night Chosures) 12 days Mon 10/18/21 Fri 10/29/21 108 Airfield Safety and Traffic Control 12 days Mon 10/18/21 Fri 10/29/21 109 Grooving (30 Days after P-401 paving is completed) 8 days Mon 10/18/21 Fri 10/29/21 110 Marking, 2 Coats with Beads (Second Coat) 7 days Sa		-				_														
99 Install MALSF Light Fixtures 4 days Tue 9/7/21 Fri 9/10/21 100 FAA MALSF Inspections 1 day Sat 9/11/21 Sat 9/11/21 101 Install Runway and Taxiway Light Fixtures 8 days Wed 9/15/21 102 Marking, 2 Coats with Beads (First Coat) 7 days Fri 9/10/21 Thu 9/16/21 103 Marking, 2 Coats with No Beads (First Coat) 7 days Fri 9/10/21 Thu 9/16/21 104 Hydroseeding 3 days Wed 9/15/21 Fri 9/17/21 105 Flight Check 1 day Fri 9/17/21 Fri 9/17/21 106 Float 10 days Fri 9/12/21 Sun 10/3/21 107 Phase 2 (Night Closures) 12 days Mon 10/18/21 Fri 10/29/21 108 Airfield Safety and Traffic Control 12 days Mon 10/18/21 Fri 10/29/21 109 Grooving (30 Days after P-401 paving is completed) 8 days Mon 10/18/21 Fri 10/29/21 110 Marking, 2 Coats with Beads (Second Coat) 7 days Sat 10/23/21 Fri 10/29/21						_														
100FAA MALSF Inspections1 daySat 9/1/21Sat 9/1/21101Install Runway and Taxiway Light Fixtures8 daysWed 9/8/21Wed 9/15/21102Marking, 2 Coats with Beads (First Coat)7 daysFri 9/10/21Thu 9/16/21103Marking, 2 Coats with No Beads (First Coat)7 daysFri 9/10/21Thu 9/16/21104Hydroseeding3 daysWed 9/15/21Fri 9/17/21105Flight Check1 dayFri 9/17/21Fri 9/17/21106Float10 daysFri 9/24/21Sun 10/3/21107Phase 2 (Night Cosures)12 daysMon 10/18/21Fri 10/29/21108Airfield Safety and Traffic Control12 daysMon 10/18/21Fri 10/29/21109Marking, 2 Coats with Beads (Second Coat)7 daysSat 10/23/21Fri 10/29/21						_														
11 Install Runway and Taxiway Light Fixtures 8 days Wed 9/8/21 Wed 9/15/21 122 Marking, 2 Coats with Beads (First Coat) 7 days Fi 9/10/21 Thu 9/16/21 103 Marking, 2 Coats with No Beads (First Coat) 7 days Fi 9/10/21 Thu 9/16/21 104 Hydroseeding 3 days Wed 9/15/21 Fi 9/17/21 105 Filight Check 1 day Fi 9/17/21 Fi 9/17/21 106 Float 10 days Fi 9/24/21 Sun 10/3/21 107 Phase 2 (Night Closures) 12 days Mon 10/18/21 Fi 10/29/21 108 Airfield Safety and Traffic Control 12 days Mon 10/18/21 Mon 10/25/21 109 Grooving (30 Days after P-401 paving is completed) 8 days Non 10/18/21 Fi 10/29/21 110 Marking, 2 Coats with Beads (Second Coat) 7 days Sa 10/23/21 Fi 10/29/21		_																		
102 Marking, 2 Coats with Beads (First Coat) 7 days Fri 9/10/21 Thu 9/16/21 103 Marking, 2 Coats with No Beads (First Coat) 7 days Fri 9/10/21 Thu 9/16/21 104 Hydroseeding 3 days Wed 9/15/21 Fri 9/17/21 105 Flight Check 1 day Fri 9/17/21 Fri 9/17/21 106 Float 10 days Fri 9/24/21 Sun 10/3/21 107 Phase 2 (Night Closures) 12 days Mon 10/18/21 Fri 10/29/21 108 Airfield Safety and Traffic Control 12 days Mon 10/25/21 109 Grooving (30 Days after P-401 paving is completed) 8 days Mon 10/25/21 110 Marking, 2 Coats with Beads (Second Coat) 7 days Sat 10/23/21		•	1 day																	
103Marking, 2 Coats with No Beads (First Coat)7 daysFri 9/10/21Thu 9/16/21104Hydroseeding3 daysWed 9/15/21Fri 9/17/21105Flight Check1 dayFri 9/17/21Fri 9/17/21106Float10 daysFri 9/24/21Sun 10/3/21107Phase 2 (Night Closures)12 daysMon 10/18/21Fri 10/29/21108Airfield Safety and Traffic Control12 daysMon 10/18/21Fri 10/29/21109Grooving (30 Days after P-401 paving is completed)8 daysMon 10/18/21Mon 10/25/21110Marking, 2 Coats with Beads (Second Coat)7 daysSat 10/23/21Fri 10/29/21	101	Install Runway and Taxiway Light Fixtures	8 days	Wed 9/8/21	Wed 9/15/21															
104Hydroseeding3 daysWed 9/15/21Fri 9/17/21105Flight Check1 day1 fri 9/17/21Fri 9/17/21106Float10 daysFri 9/24/21Sun 10/3/21107Phase 2 (Night Closures)12 daysMon 10/18/21Fri 10/29/21108Airfield Safety and Traffic Control12 daysMon 10/18/21Fri 10/29/21109Grooving (30 Days after P-401 paving is completed)8 daysMon 10/18/21Mon 10/25/21110Marking, 2 Coats with Beads (Second Coat)7 daysSat 10/23/21Fri 10/29/21	102	Marking, 2 Coats with Beads (First Coat)	7 days	Fri 9/10/21	Thu 9/16/21															
105Flight Check1 dayFri 9/17/21Fri 9/17/21106Float10 daysFri 9/24/21Sun 10/3/21107Phase 2 (Night Closures)12 daysMon 10/18/21Fri 10/29/21108Airfield Safety and Traffic Control12 daysMon 10/18/21Fri 10/29/21109Grooving (30 Days after P-401 paving is completed)8 daysMon 10/18/21Mon 10/25/21110Marking, 2 Coats with Beads (Second Coat)7 daysSat 10/23/21Fri 10/29/21	103	Marking, 2 Coats with No Beads (First Coat)	7 days	Fri 9/10/21	Thu 9/16/21															
105Flight Check1 day1 dayFri 9/17/21Fri 9/17/21106Float10 daysFri 9/24/21Sun 10/3/21107Phase 2 (Night Closures)12 daysMon 10/18/21Fri 10/29/21108Airfield Safety and Traffic Control12 daysMon 10/18/21Fri 10/29/21109Grooving (30 Days after P-401 paving is completed)8 daysMon 10/18/21Mon 10/25/21110Marking, 2 Coats with Beads (Second Coat)7 daysSat 10/23/21Fri 10/29/21	104	Hydroseeding	3 days	Wed 9/15/21	Fri 9/17/21															
106Float10 daysFri 9/24/21Sun 10/3/21107Phase 2 (Night Closures)12 daysMon 10/18/21Fri 10/29/21108Airfield Safety and Traffic Control12 daysMon 10/18/21Fri 10/29/21109Grooving (30 Days after P-401 paving is completed)8 daysMon 10/18/21Mon 10/25/21110Marking, 2 Coats with Beads (Second Coat)7 daysSat 10/23/21Fri 10/29/21						-														
107Phase 2 (Night Closures)12 daysMon 10/18/21Fri 10/29/21108Airfield Safety and Traffic Control12 daysMon 10/18/21Fri 10/29/21109Grooving (30 Days after P-401 paving is completed)8 daysMon 10/18/21Mon 10/25/21110Marking, 2 Coats with Beads (Second Coat)7 daysSat 10/23/21Fri 10/29/21		0				-														
108Airfield Safety and Traffic Control12 daysMon 10/18/21Fri 10/29/21109Grooving (30 Days after P-401 paving is completed)8 daysMon 10/18/21Mon 10/25/21110Marking, 2 Coats with Beads (Second Coat)7 daysSat 10/23/21Fri 10/29/21						_														
109Grooving (30 Days after P-401 paving is completed)8 daysMon 10/18/21Mon 10/25/21110Marking, 2 Coats with Beads (Second Coat)7 daysSat 10/23/21Fri 10/29/21						_														
						_														
111 Marking, Single Coat with No Beads (Second Coat) 7 days Sat 10/23/21 Fri 10/29/21		Marking, 2 Coats with Beads (Second Coat)	7 days	Sat 10/23/21	Fri 10/29/21															
	111	Marking, Single Coat with No Beads (Second Coat)	7 days	Sat 10/23/21	Fri 10/29/21															
Task Summary Inactive Milestone 🔷 Duration-only 🛛 Start-only L External Milestone 🔶 Manua		:: Complete Project Sched		mary			0				0									-
Project: Complete Project Sched	ate N	Aon 3/29/21 spin	rioject Sum	indiy I	i inactivi	Junning	u	U	widiiudi Si	minary Konu			r misn-only		-	Deadl		•		
Project: Complete Project Sched	arce. i	• • • • • • • •	1.			1.7							e			-				

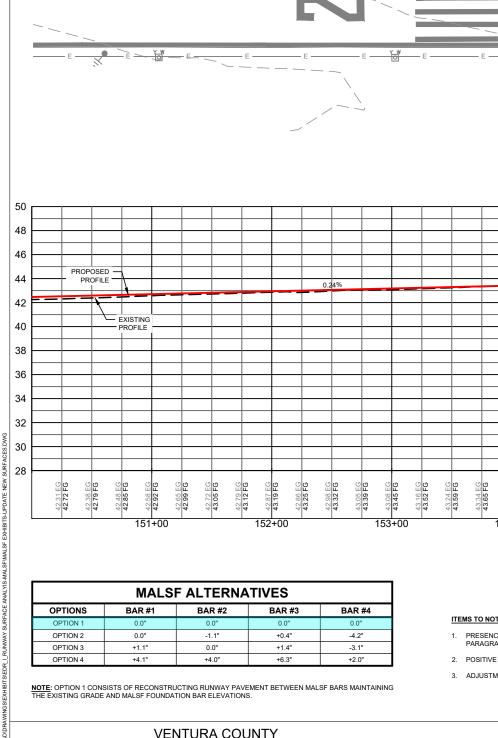
INTENTIONALLY BLANK

1 Ri	nway 7-25, Taxiway Connectors, and Parallel Taxiway	131 days	Mon 6/28/21		20 25		y 2021 80	5	10	15	20	25	30	4 9) 14	19	24	29	tember 2021 3	8 13
Ра	vement Reconstruction (Base Bid + Bid Alts 1 & 2)																			
	Construction Element	131 days	Mon 6/28/21		0															
	Phase 1	105 days		Sun 10/10/21	0-															
	Work Area 1	98 days	Mon 6/28/21		0-															
	Airfield Safety and Traffic Control	1 day		Mon 6/28/21		ካ														
	Compliance with Pollution, Erosion, and Siltation Control	3 days	Mon 6/28/21	Wed 6/30/21																
	Underground Utility Investigation and Potholing	2 days	Tue 6/29/21	Wed 6/30/21																
	Demolish Asphalt Pavement	8 days	Tue 6/29/21	Tue 7/6/21	(*														
	Remove and Salvage REILs. Demolish PCC Foundation	1 day	Thu 7/1/21	Thu 7/1/21																
)	Demolish Conduit, Cable, and Counterpoise	14 days	Fri 7/2/21	Thu 7/15/21						-h										
1	Demolish Concrete Encased Conduit, Cable, and Counterpoise	3 days	Mon 7/5/21	Wed 7/7/21				•												
2	Remove Cable and Counterpoise	2 days	Tue 6/29/21	Thu 7/1/21																
-	Remove cable and Counterpoise Remove and Salvage Unlit Information Sign	3 days 1 day	Thu 7/15/21	Thu 7/15/21					_											
	Remove and Salvage Unlit Information Sign Remove and Salvage Unlit Information Sign. Demolish		Thu 7/15/21 Thu 7/15/21	Thu 7/15/21					Ģ											
	Concrete Pad Demolish Electrical Junction Can	1 day	Fri 7/2/21	Fri 7/2/21																
	Demolish Electrical Pullboxes	14 days	Fri 7/2/21	Thu 7/15/21																
7	Demolish Airfield Sign and Pad	14 days	Fri 7/2/21	Thu 7/15/21																
3	Remove and Salvage Elevated Runway Edge Light Fixture and Transformer. Protect Can	2 days	Tue 6/29/21	Wed 6/30/21		╈┿╢														
9	Remove and Salvage Elevated Threshold Light Fixture and Transformer. Protect Can	2 days	Tue 6/29/21	Wed 6/30/21		╺┿┩														
)	Demolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture	14 days	Fri 7/2/21	Thu 7/15/21																
1	Demolish Elevated Runway Edge Light and Can. Salvage Existing Fixture.	1 day	Thu 7/1/21	Thu 7/1/21																
	Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.	1 day	Mon 7/5/21	Mon 7/5/21																
	Demolish MALSF Threshold Bar (13 Lights). Salvage Existing Fixtures	3 days	Wed 6/30/21	Fri 7/2/21		-														
•	Demolish 3 MALSF Centerline Bars (5 Lights Each). Salvage Existing Fixtures	4 days	Sat 7/3/21	Tue 7/6/21																
5	Demolish Reinforced Foundation from Abandoned MALSF Bar	1 day	Wed 7/7/21	Wed 7/7/21																
6	Demolish Abandoned Waterline, if Encountered	7 days	Fri 7/2/21	Thu 7/8/21																
	Demolish Concrete Valley Gutter	1 day	Wed 7/7/21	Wed 7/7/21				M												
	Unclassified Excavation and Haul-Off	17 days	Thu 7/1/21	Sat 7/17/21		→														
1	Embankment in Place	10 days	Sat 7/10/21	Mon 7/19/21							₩ ^J									
)	Subgrade Preparation	19 days	Fri 7/2/21	Tue 7/20/21																
I	Place Asphalt Compacted Grindings, 24-inches thick	7 days	Wed 6/30/21	Tue 7/6/21	l	▶														
2	Lime Treated Subgrade, 16-inch Depth (Control Strip)	1 day	Sat 7/3/21	Sat 7/3/21																
3	Lime Treated Subgrade, 16-inch Depth (1st Mix)	23 days	Tue 7/6/21	Wed 7/28/21																
4	Lime Treated Subgrade, 16-inch Depth (2nd Mix and Compact)	23 days	Tue 7/13/21	Wed 8/4/21									Π							
5	In-Place Drying Techniques	19 days	Fri 7/2/21	Tue 7/20/21																
i	Subgrade Stabilization, Excavation Below Subgrade	23 days	Fri 7/16/21	Sat 8/7/21						•										
,	Multi-Axial Geogrid	23 days	Fri 7/16/21	Sat 8/7/21					- l											
	Crushed Aggregate Base Course, P-209 (Control Strip)		Tue 7/20/21	Tue 7/20/21																
1	Crushed Aggregate Base Course, P-209 (Pavement Section)	34 days	Sat 7/24/21	Thu 8/26/21													 _			
D	•	34 days	Sat 7/24/21	Thu 8/26/21							•									
1	Asphalt Concrete Surface Course, P-401 (Control Strip #1)	1 day	Fri 8/13/21	Fri 8/13/21											*					
2	Asphalt Concrete Surface Course, P-401 (Control Strip #2)	1 day	Fri 8/20/21	Fri 8/20/21																
		Milestone	•	Project Summary		Inac	ve Miles	one		Ma	anual Task			Manual Sum	mary Rollup		Start-on	ly	C	External Task

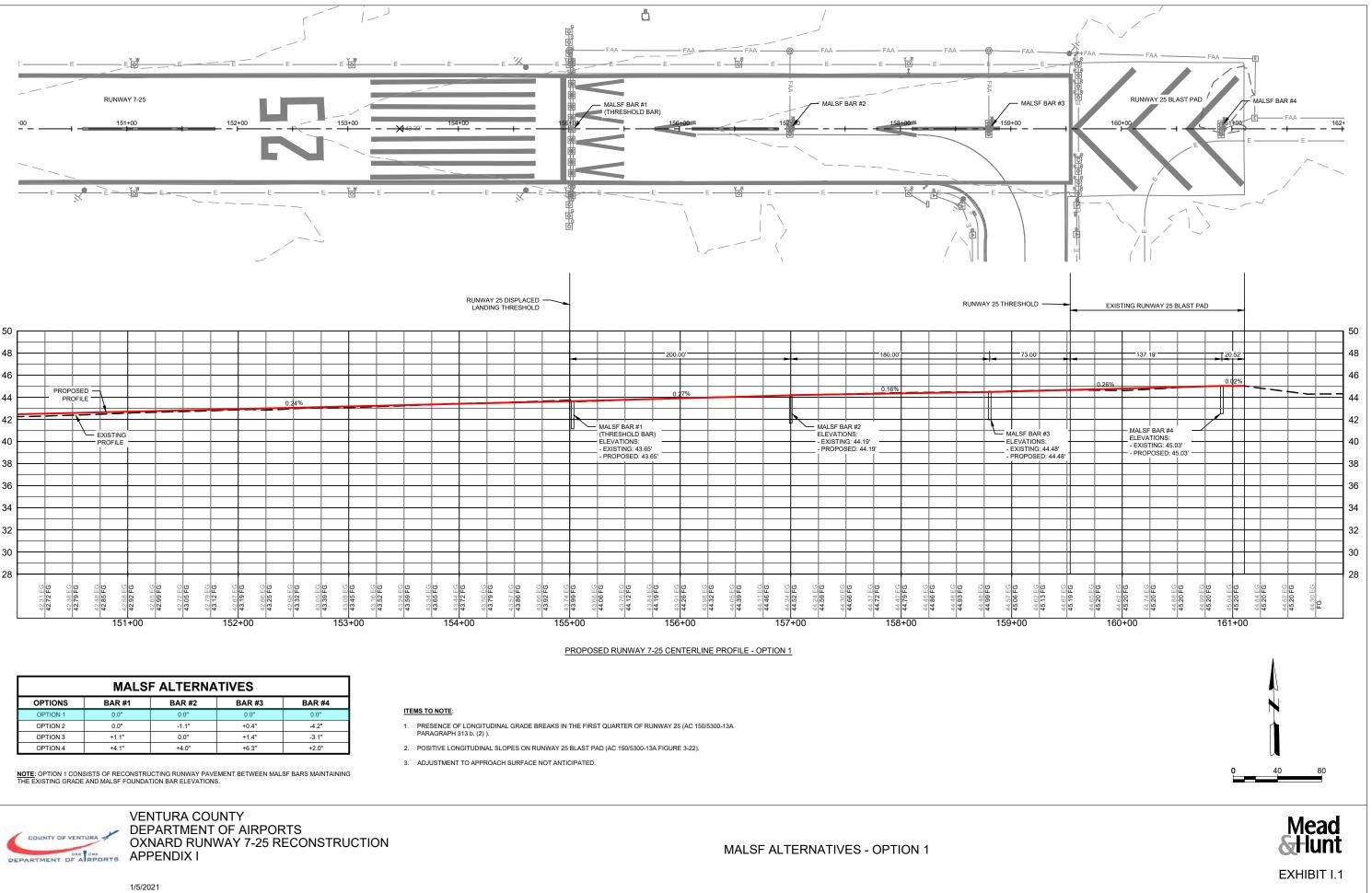

+ Bid Alt 1 +	Bid Alt 2)					 Mon 3/	29/2	1
	October 2021	8	13	18	23	November 2		
		-1						
	_							
\$	Deadline Progress	•		Man	ual Progress		_	

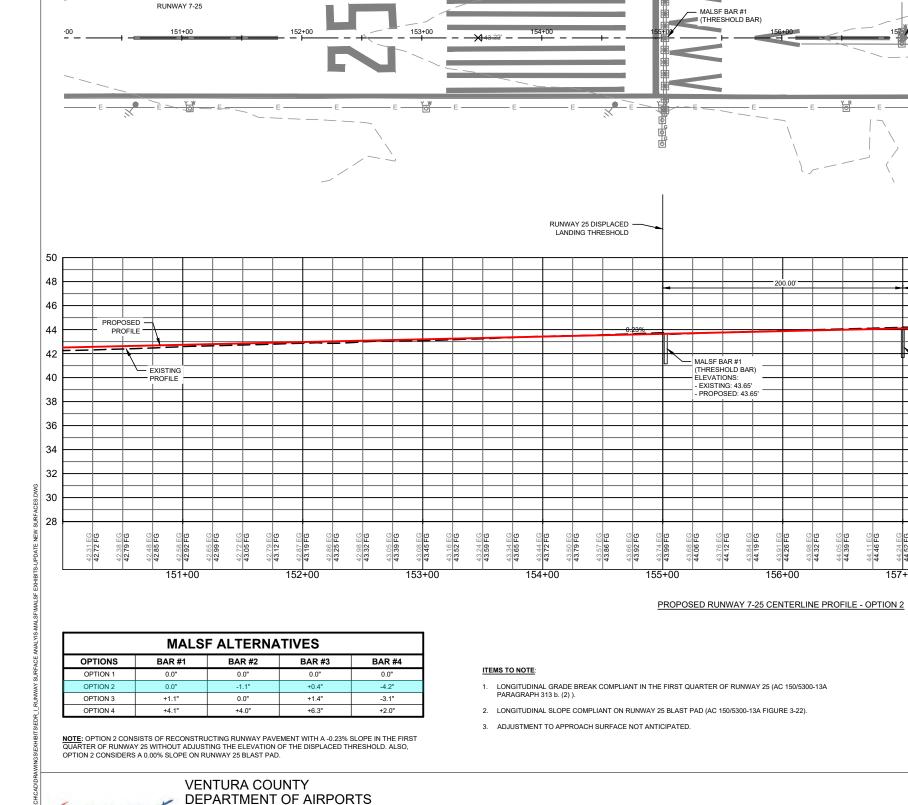
					Runway 7	1												Mon 3/2
Task Na	ame	Duration	Start	Finish	15 20 25	July 2021 30	5	10 1!	5 20	August	2021	14 19	24 29	September 2021	8 13 18	Octobe	r 2021 3 8 13 18	November 202 23 28 2
	Asphalt Concrete Surface Course, P-401 (First Lift)	7 days	Fri 8/27/21	Thu 9/2/21									T					
	Asphalt Concrete Surface Course, P-401 (Second Lift)	7 days	Fri 9/3/21	Thu 9/9/21	-													
	•	1 day	Fri 9/10/21	Fri 9/10/21	_													
	12-inch RCP, Class IV, outside Pavement Areas	5 days	Fri 7/2/21	Tue 7/6/21			-											
	12-inch RCP, Class IV, within Pavement Areas	2 days	Wed 7/7/21	Thu 7/8/21	-		_											
		15 days	Fri 7/23/21	Fri 8/6/21														
		15 days	Fri 7/23/21	Fri 8/6/21	-													
	48" Stormdrain Manholes	7 days	Fri 7/2/21	Thu 7/8/21														
	Catch Basin/Drop Inlet	1 day	Mon 7/5/21	Mon 7/5/21	-		-											
	Adjust Catch Basin to Grade	1 day	Tue 7/6/21	Tue 7/6/21			*											
	Connect to Existing Manholes/Basins	7 days	Fri 7/2/21	Thu 7/8/21														
	•	2 days		Tue 8/24/21	-									+				
	Controlled Low-Strength Material (CLSM) for Existing Utility Protection	5 days	Mon 7/5/21	Fri 7/9/21														
	No. 8 AWG 5 kV, L-824, Type C Cable, Installed in Duct	6 days	Mon 8/9/21	Sat 8/14/21								•						
	Bank or Conduit																	
	•	33 days	Sat 7/24/21	Wed 8/25/21														
	Adjacent to Duct Bank or Conduit	17 -1	Tue 7/07/04	Thu 0/40/01	-													
	No. 6 AWG Tinned Counterpoise Wire, Installed in Duct Bank or Conduit	17 days	Tue 7/27/21	Thu 8/12/21														
	No. 1/0 AWG Tinned Counterpoise Wire for MALSF,	16 days	Wed 7/14/21	Thu 7/29/21	-													
	Installed Adjacent to / In the Duct Bank or Conduit																	
					-													
	No. 2-8 AWG 600V, L-824, Type THWN-2 Cable for MALSF, Installed in Duct Bank or Conduit	16 days	Wed 7/14/21	Thu 7/29/21				•										
		5 days	Sat 7/31/21	Wed 8/4/21	-													
	Conduit	5 days	581 7/51/21	wed 0/4/21														
	Concrete Encased Electrical Duct Bank, 1W - 2" GRMC	16 days	Wed 7/14/21	Thu 7/29/21				•										
	Conduit				_													
	Non-encased Electrical Duct Bank, 1W - 2" Conduit	14 days	Fri 7/30/21	Thu 8/12/21														
	Non-encased Electrical Duct Bank, 2W - 2" Conduit	14 days	Fri 7/30/21	Thu 8/12/21														
	Non-encased Electrical Duct Dank, 200 - 2 - Conduct	14 08 93	1117/30/21	110 0/12/21														
	Non-encased Electrical Duct Bank, 1W - 3" and 1W - 2"	3 days	Tue 7/27/21	Thu 7/29/21														
	Conduit				_													
	Non-encased Electrical Duct Bank, 1W - 3" and 2W - 2" Conduit	3 days	Tue 7/27/21	Fri 7/30/21														
	Non-encased Electrical Duct Bank, 1W - 3" and 3W - 2"	3 days	Tue 7/27/21	Thu 7/29/21	-													
	Conduit	5 00 95	100 7/27/21	1110 7/25/21														
	Concrete Encase Existing FAA Line Under Proposed	5 days	Mon 7/12/21	Fri 7/16/21														
	Pavement				_			TII										
	Concrete Encase Existing FAA Line Outside Pavement	1 day	Sat 7/10/21	Sat 7/10/21														
	Construct Electrical Pullbox: Aircraft Rated	5 days	Sat 7/31/21	Wed 8/4/21														
		5 days 1 day		Wed 8/4/21 Wed 7/14/21	-						-							
		2 days	Mon 7/26/21		-													
		1 day	Mon 7/26/21		-													
	•	9 days	Wed 7/14/21															
	Construct 3 MALSF Centerline Bars	7 days	Fri 7/23/21	Thu 7/29/21	-													
	MALSF PCC Cure Time	7 edays	Thu 7/29/21	Thu 8/5/21							-							
	Construct New L-858B(L) Distance Remaining Sign and	2 days	Mon 7/12/21	Tue 7/13/21				▶										
	Concrete Pad	5 dave	Mon 7/19/21	Eri 7/22/21	-													
	Construct New L-858(L) Runway Hold Position Sign and Concrete Pad	5 uays	WON //19/21	FII //23/21						·								
		5 days	Mon 7/19/21	Fri 7/23/21	-					ь II								
	Double Arrow, with Taxiway Identifier and Concrete																	
	Pad			- · - / /-	-													
	Construct New L-858(L) Taxiway Guidance Sign, Single Arrow, with Taxiway Identifier and Concrete Pad	5 days	Mon 7/19/21	Fri 7/23/21					*	н								
		4 days	Wed 7/14/21	Sat 7/17/21	-													
	without Taxiway Identifier and Concrete Pad																	
	plete Project Sched Task	Milestone	•	Project S	Summary	Inactive Milest	tone 💧		Manual Task		Manual Summary Ro	llun	Start-only	С	External Tasks	Dead	ine 🖊 M	Nanual Progress
				i roject a														

ask Nam	e	Duration	Start	Finish		July	2021			August 2021 30 4 9		September 202	.1	Octo	ber 2021		November 202
	Install Salvaged Unlit Informational Sign on Existing Concrete Pad	1 day	Sat 7/24/21	Sat 7/24/21	5 20	25 30	5	10 15 20	25	30 4 9	14 19 24	29 3	8 13	18 23 28	3 8 13	18 23 28	8 2
	Install Salvaged Unlit Informational Sign on New Concrete Pad	1 day	Mon 7/26/21	Mon 7/26/21					-								
	Adjust Base Can for New L-861(L) Elevated Runway Edge Light	13 days	Mon 7/5/21	Sat 7/17/21													
	Adjust Base Can for New L-861E(L) Runway Threshold Light and Transformer	13 days	Mon 7/5/21	Sat 7/17/21													
	Construct New L-861(L) Elevated Runway Edge Light and Base Can	2 days	Wed 7/28/21	Fri 7/30/21						•							
	Construct New L-852D(L) In-Pavement Runway Edge Light and Base Can	2 days	Mon 8/2/21	Tue 8/3/21													
	Construct New L-861T(L) Medium Intensity Elevated Taxiway Edge Light and Base Can	14 days	Fri 7/30/21	Thu 8/12/21													
	Install ID Tag	5 days	Thu 9/9/21	Mon 9/13/21													
	Install Salvaged REILs on New Concrete Pad	2 days	Mon 7/19/21	Tue 7/20/21													
	Change Sign Legend	4 days	Mon 9/20/21	Thu 9/23/21													
	Shoulder Finishing and Miscellanous Grading	6 days	Mon 9/6/21	Sat 9/11/21													
	Install MALSF Light Fixtures	4 days	Mon 9/6/21	Thu 9/9/21													
	FAA MALSF Inspections	1 day	Fri 9/10/21	Fri 9/10/21													
	Install Runway and Taxiway Light Fixtures	5 days	Thu 9/9/21	Mon 9/13/21													
	Marking, 2 Coats with Beads (First Coat)		Fri 9/10/21	Thu 9/16/21													
		7 days		Thu 9/16/21 Thu 9/16/21													
	Marking, 2 Coats with No Beads (First Coat)	7 days	Fri 9/10/21	Wed 9/15/21									•				
	Hydroseeding Flight Check	3 days	Mon 9/13/21											J			
	Flight Check Float	1 day	Fri 9/17/21	Fri 9/17/21											_		
		10 days	Fri 9/24/21	Sun 10/3/21													
	Nork Area 2	104 days	Tue 6/29/21	Sun 10/10/21											1		
	Airfield Safety and Traffic Control	1 day	Tue 6/29/21	Tue 6/29/21													
	Compliance with Pollution, Erosion, and Siltation Control	1 day	Thu 7/1/21	Thu 7/1/21													
	Airport Access and Haul Route Repair	2 days	Tue 9/28/21	Wed 9/29/21													
	Underground Utility Investigation and Potholing	1 day	Thu 7/1/21	Thu 7/1/21													
	Demolish Asphalt Pavement	7 days	Wed 7/7/21	Tue 7/13/21			*										
	Asphalt Crack Repair (under 1.5" width)	2 days	Thu 7/15/21	Fri 7/16/21													
	Asphalt Crack Repair (over 1.5" width)	5 days	Thu 7/15/21	Mon 7/19/21													
	Remove Airfield Marking	2 days	Fri 7/2/21	Sat 7/3/21													
	Cold Mill, Variable Depth (2 inches Maximum)	1 day	Wed 7/14/21	Wed 7/14/21													
	Demolish Conduit, Cable, and Counterpoise	4 days	Fri 7/16/21	Mon 7/19/21													
	Demolish Concrete Encased Conduit, Cable, and	7 days		Mon 7/26/21													
	Counterpoise Remove Cable and Counterpoise	, 1 day	Fri 7/2/21	Fri 7/2/21													
	Demolish Electrical Pullbox	11 days	Fri 7/16/21	Mon 7/26/21													
	Demolish Airfield Sign and Pad	4 days	Fri 7/16/21	Mon 7/19/21													
	Demolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.	4 days	Fri 7/16/21	Mon 7/19/21													
	Demolish In-pavement Taxiway Edge Light and Can. Salvage Existing Fixture.		Tue 7/20/21	Mon 7/26/21													
	Demolish Abandoned Waterline, if Encountered	2 days	Fri 7/16/21	Sat 7/17/21													
	Unclassified Excavation and Haul-off	9 days	Mon 7/19/21						→								
	Embankment in Place	5 days		Wed 7/28/21													
	Subgrade Preparation Lime Treated Subgrade, 16-inch Depth (1st Mix)	9 days 9 days	Wed 7/21/21 Thu 7/29/21														
	Lime Treated Subgrade, 16-inch Depth (2nd Mix and Compact)	9 days	Thu 8/5/21	Fri 8/13/21													
	In-Place Drying Techniques	9 days	Wed 7/21/21	Thu 7/29/21													
		9 days	Mon 8/9/21	Tue 8/17/21													
	Multi-axial Geogrid	9 days	Mon 8/9/21	Tue 8/17/21													
	-	21 days	Fri 8/27/21	Thu 9/16/21													
	Crushed Aggregate Base Course, P-209 (Shoulders)	21 days	Fri 8/27/21	Thu 9/16/21							↓						
	ete Project Sched Task	Milestone	•	Project Summa	y F	Inactiv	Milestone	Manual Ta	ask	Manual Summary I	Rollup Start-c	only E	External Tasks	De	adline 🕂	Manual Progress	


	ask Name	Duration	Start	Finish	15 20		July 2021 30	5	10	15			August	2021	0	14	10		.	~	15
	Asphalt Concrete Surface Course, P-401 (First Lift)	4 days	Fri 9/17/21	Mon 9/20/21	15 20	25	30	5	10	15	20	25	30	4	9	14	19	24	4	29	-
	Asphalt Concrete Surface Course, P-401 (Second Lift)	3 days	Wed 9/22/21	Fri 9/24/21	-																
	12-inch RCP, Class IV, outside Pavement Areas	3 days	Mon 7/12/21	Wed 7/14/21				ſ													
			71 7/15/04	71 7/15/04																	
		1 day	Thu 7/15/21	Thu 7/15/21	_									↓							
		8 days	Sat 8/7/21	Sat 8/14/21	-											•					
		8 days	Sat 8/7/21	Sat 8/14/21	_																
		4 days	Mon 7/12/21 Wed 7/14/21		_			ĺ													
		1 day	Mon 7/12/21	Thu 7/15/21	-																
	Controlled Low-Strength Material (CLSM) for Existing	4 days	Thu 7/22/21	Mon 7/26/21	-																
	Utility Protection				_																
	No. 8 AWG 5 kV, L-824, Type C Cable, Installed in Duct Bank or Conduit	6 days	Mon 8/30/21	Sat 9/4/21																	
	No. 6 AWG Tinned Counterpoise Wire, Installed Adjacent to Duct Bank or Conduit	15 days	Fri 8/27/21	Fri 9/10/21														Ļ			
	No. 6 AWG Tinned Counterpoise Wire, Installed in Duct Bank or Conduit	12 days	Mon 8/23/21	Fri 9/3/21													ſ				
	Concrete Encased Electrical Duct Bank, 1W - 2" Conduit	12 days	Mon 8/23/21	Fri 9/3/21													*				
	Concrete Encased Electrical Duct Bank, 5W - 2" Conduit	2 days	Wed 8/11/21	Thu 8/12/21												J					
	Non-encased Electrical Duct Bank, 1W - 2" Conduit	9 days	Fri 8/13/21	Sat 8/21/21																	
	Non-encased Electrical Duct Bank, 2W - 2" Conduit	2 days	Mon 8/16/21	Tue 8/17/21																	
	Non-encased Electrical Duct Bank, 3W - 2" Conduit	1 day	Wed 8/18/21	Wed 8/18/21												ì					
	Concrete Encase Existing FAA Line Under Proposed Pavement	7 days	Wed 7/28/21	Tue 8/3/21																	
	Concrete Encase Existing FAA Line Outside Pavement	1 day	Tue 7/27/21	Tue 7/27/21																	
	Lower and Concrete Encase FAA Line	5 days	Sat 7/31/21	Wed 8/4/21																	
	Construct Electrical Pullbox: Aircraft Rated	2 days	Wed 8/11/21	Thu 8/12/21	-										L						
C	Construct FAA Pull Box	3 days	Wed 7/28/21	Fri 7/30/21	-							+									
Со	nstruct 24" Junction Can: L-868 with Lid	2 days	Mon 8/16/21	Tue 8/17/21																	
Con		1 day	Tue 7/27/21	Tue 7/27/21	1						C										
	Concrete Pad Construct New L-858(L) Taxiway Guidance Sign,	, 6 days	Sat 7/24/21	Thu 7/29/21	_								-								
	Double Arrow, with Taxiway Identifier and Concrete Pad																				
	Construct New L-861T(L) Medium Intensity Elevated Taxiway Edge Light and Base Can	9 days	Fri 8/13/21	Sat 8/21/21					l						\ *						
	Construct New L-852T(L) Medium Intensity In-Pavement Taxiway Edge Light and Base Can	12 days	Mon 8/23/21	Fri 9/3/21						l				(1
	Install ID Tag	2 days	Mon 9/27/21	Tue 9/28/21																	
		1 day	Thu 9/30/21	Thu 9/30/21	-																
		4 days	Fri 9/24/21	Mon 9/27/21	-																
		4 days	Sat 9/25/21	Tue 9/28/21																	
		3 days	Sat 9/25/21	Mon 9/27/21	-																
		3 days	Tue 9/28/21	Thu 9/30/21	-																
		10 days		Sun 10/10/21																	
		12 days	Mon 10/25/21		1																
		12 days	Mon 10/25/21		1																
		8 days	Mon 10/25/21		-																
	Marking, 2 Coats with Beads (Second Coat)	8 days	Fri 10/29/21	Fri 11/5/21	-																
		, 8 days	Fri 10/29/21		-																

Project: Complete Project Sched Date: Mon 3/29/21	Task Split	Milestone Summary	* r	Project Summary Inactive Task	Inactive Milestone	* 	Manual Task Duration-only		Manual Summary Rol Manual Summary	up	Start-only Finish-only	С Э	External Tasks External Milestone
								Page 4					




Appendix I - Preliminary Runway Surface Analysis

Mead&Hunt A11 X:\3138400\181115.02\TECH\Design\Reports\Engineering\100%\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report-100% compiled wAppdx.docx

/2021 2:04:1 138400(1811

OXNARD RUNWAY 7-25 RECONSTRUCTION

MALSF ALTERNATIVES - OPTION 2

MALSF BAR #2

180.00

MALSF BAR #2

44.24 EG 44.59 FG

44.24 EG 44.52 FG

157+00

44.30 EG 44.66 FG

44.72 FG

44.79 FG

158+00

ELEVATIONS: - EXISTING: 44.19

- PROPOSED: 44.10

ů

- MALSF BAR #1

MALSF BAR #1

43.68 EG 44.06 FG

43.76 EG 44.12 FG

43.84 EG 44.19 FG

43.98 EG 44.32 FG

43.91 EG 44.26 FG

156+00

44.05 EG 44.39 FG

44.11 EG 44.46 FG

(THRESHOLD BAR) ELEVATIONS:

- EXISTING: 43.65'

- PROPOSED: 43.65'

(THRESHOLD BAR)

1. LONGITUDINAL GRADE BREAK COMPLIANT IN THE FIRST QUARTER OF RUNWAY 25 (AC 150/5300-13A PARAGRAPH 313 b. (2)).

APPENDIX I

COUNTY OF VENTURA

DEPARTMENT OF A RPORTS

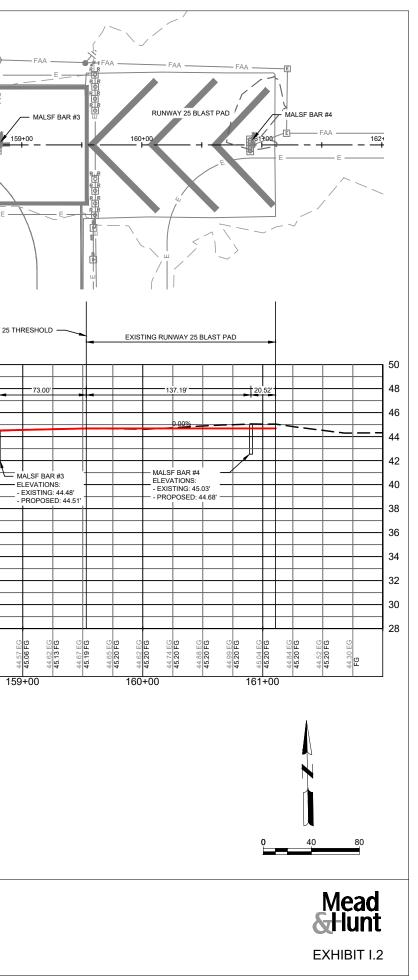
W2021 2:04:1 138400/1811

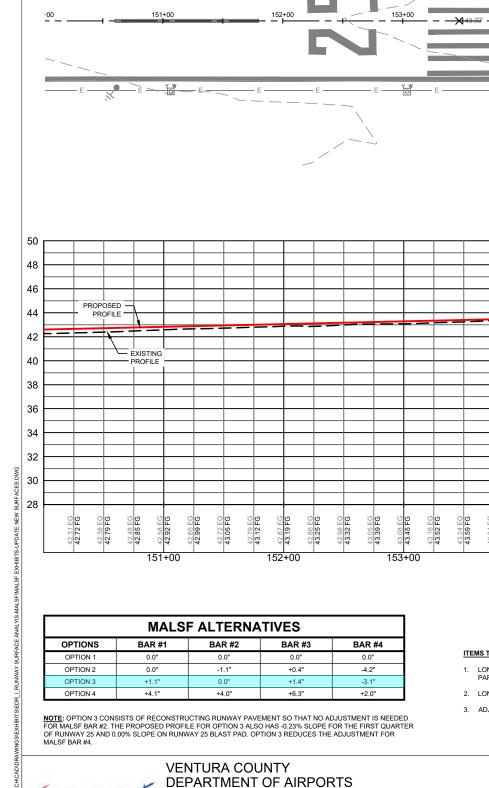
RUNWAY 25 THRESHOLD -

_

44.48 EG 44.93 FG

44.48 EG 44.99 FG


44.57 EG 45.06 FG


159+00

44.45 EG 44.86 FG

73.00'

50+00

RUNWAY 7-25

MALSF ALTERNATIVES - OPTION 3

158+00

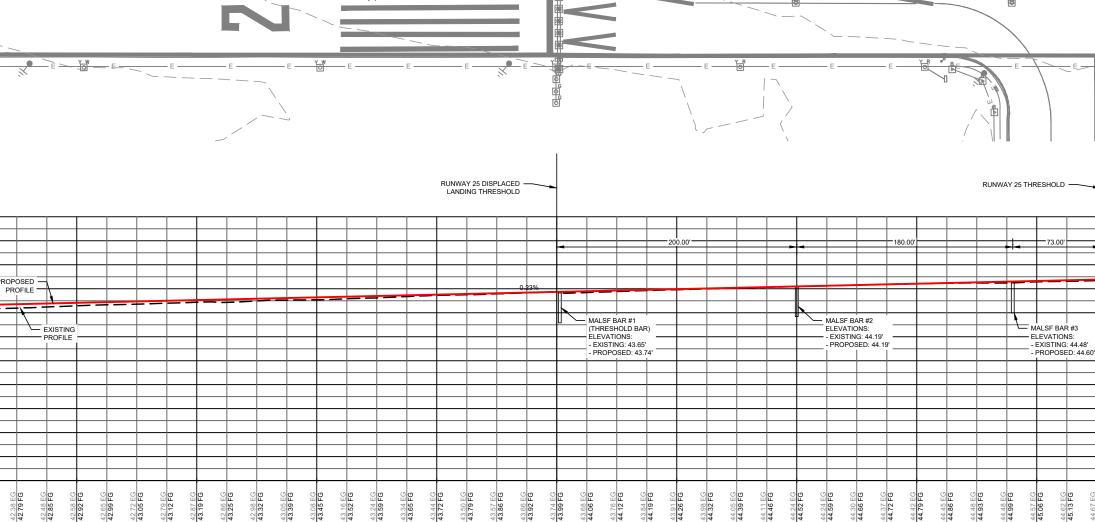
MALSF BAR #2

50+00

159+00

- 3. ADJUSTMENT TO APPROACH SURFACE NOT ANTICIPATED.
- 2. LONGITUDINAL SLOPE COMPLIANT ON RUNWAY 25 BLAST PAD (AC 150/5300-13A FIGURE 3-22).
- 1. LONGITUDINAL GRADE BREAK COMPLIANT IN THE FIRST QUARTER OF RUNWAY 25 (AC 150/5300-13A PARAGRAPH 313 b. (2)).

- ITEMS TO NOTE:

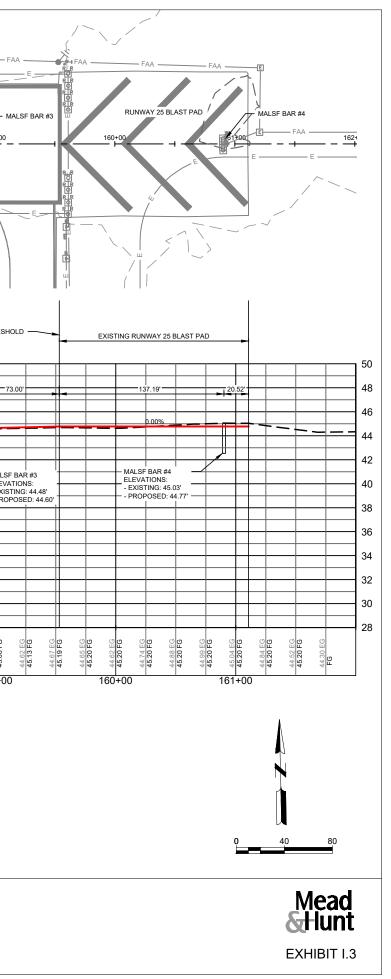


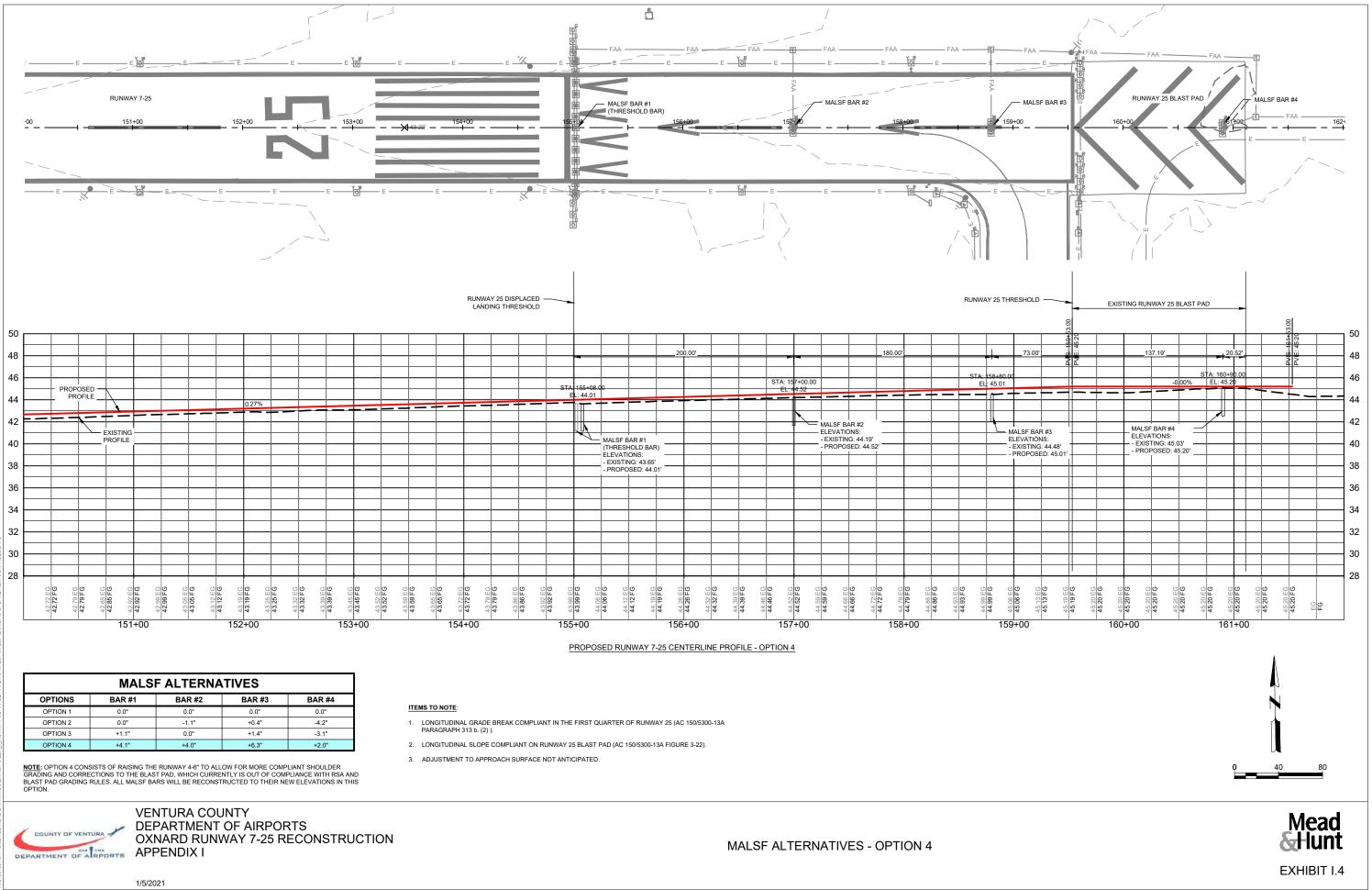
PROPOSED RUNWAY 7-25 CENTERLINE PROFILE - OPTION 3

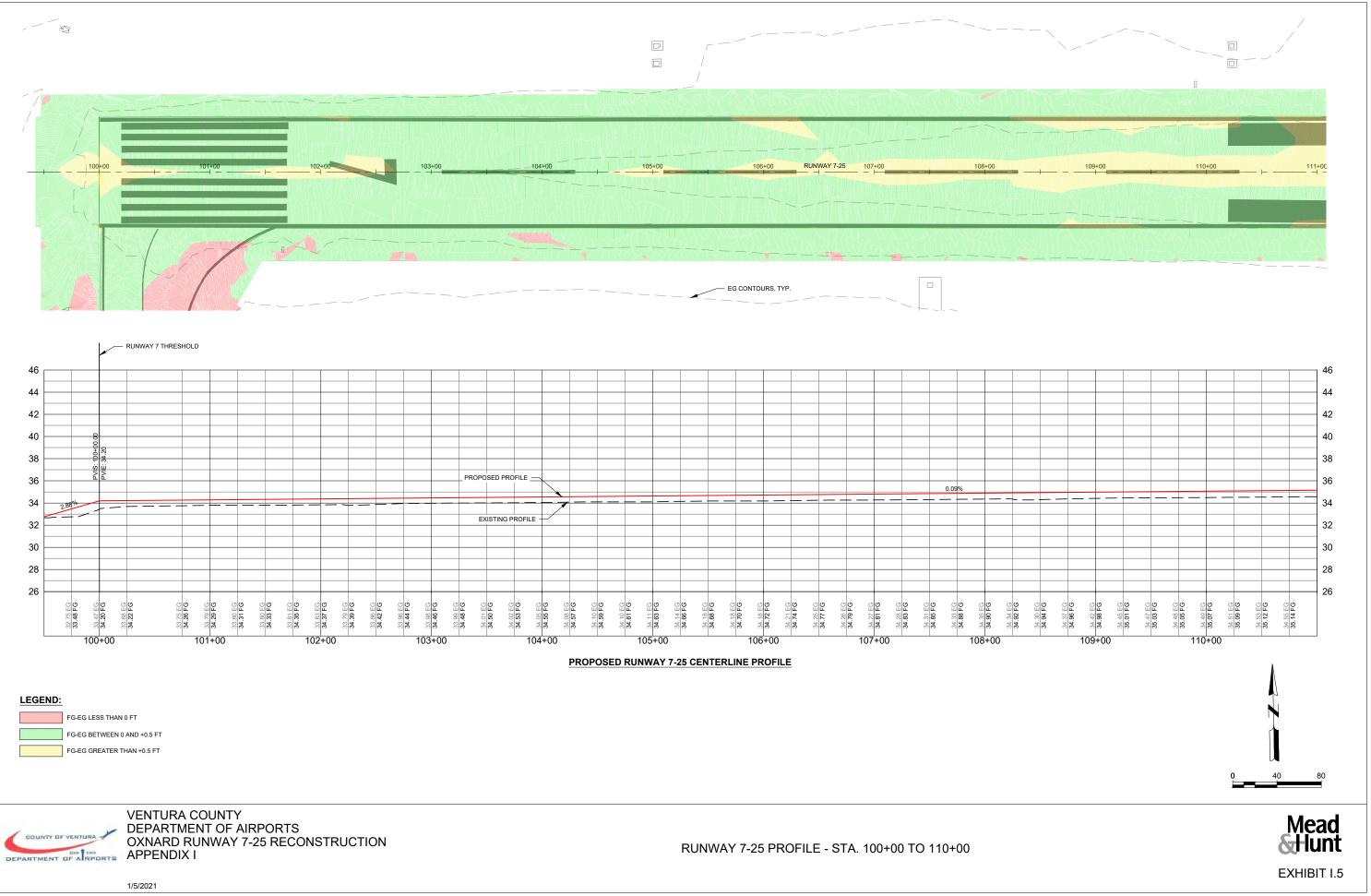
ů

- MALSF BAR #1

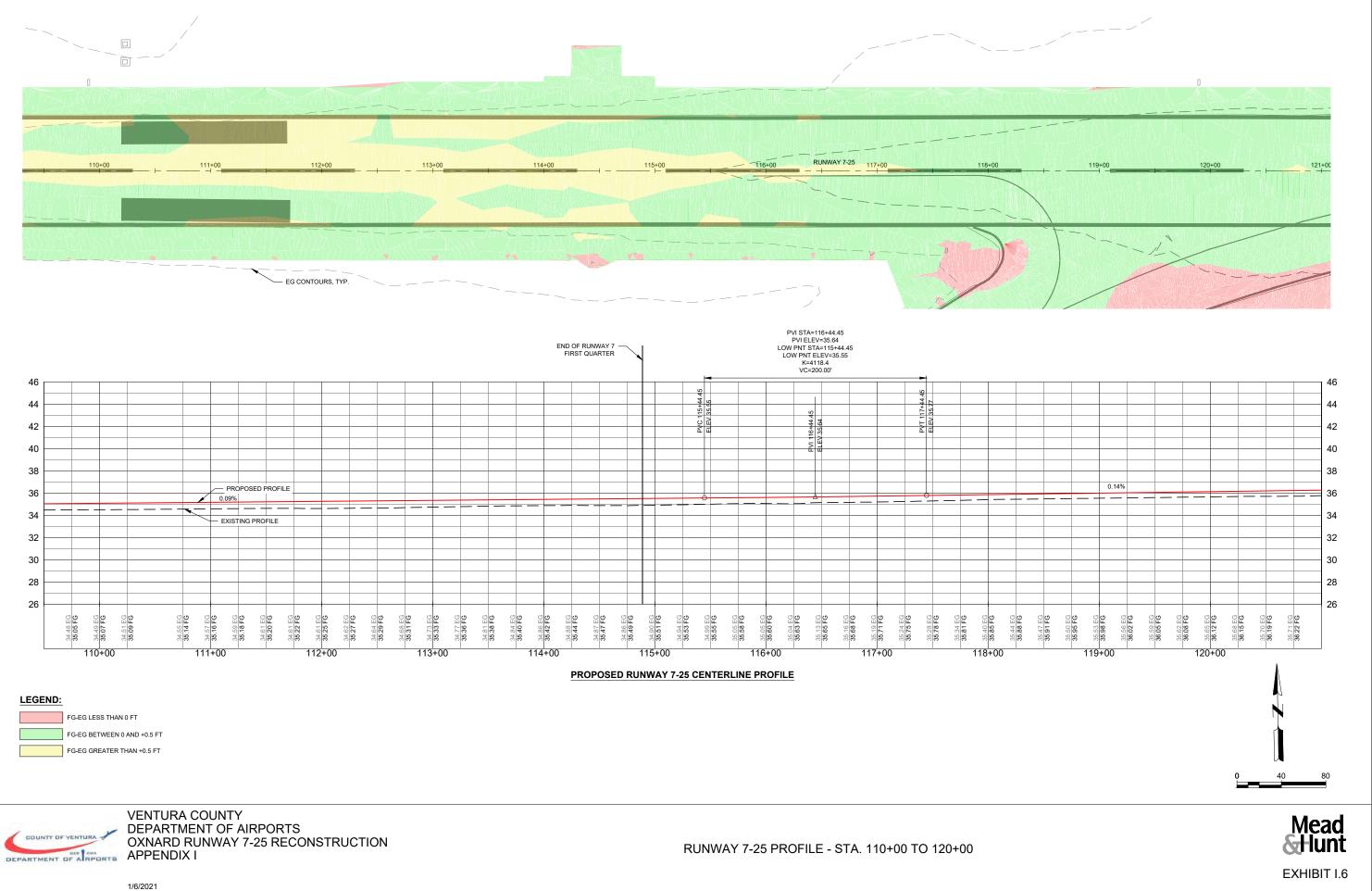
(THRESHOLD BAR)

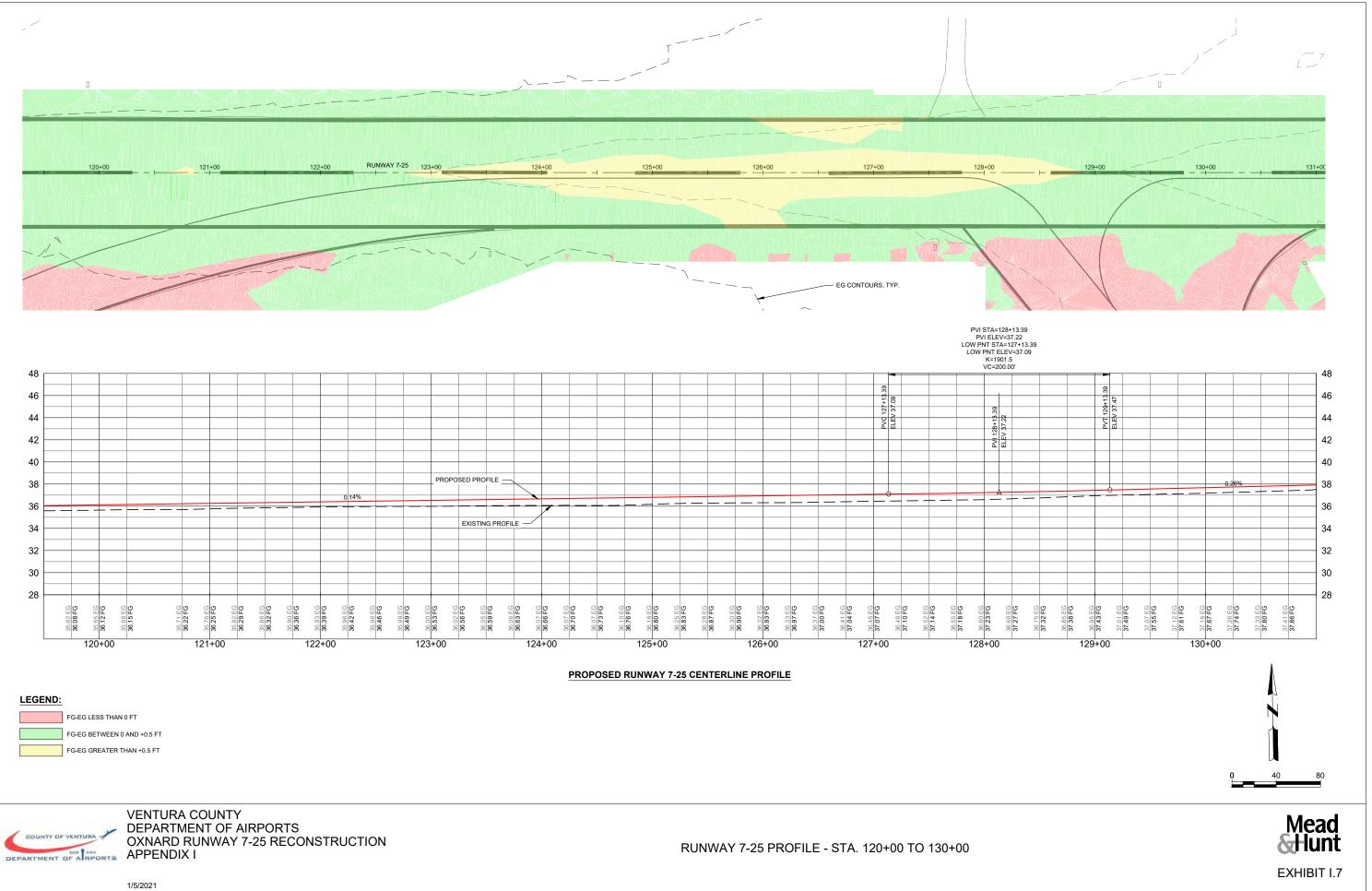

APPENDIX I

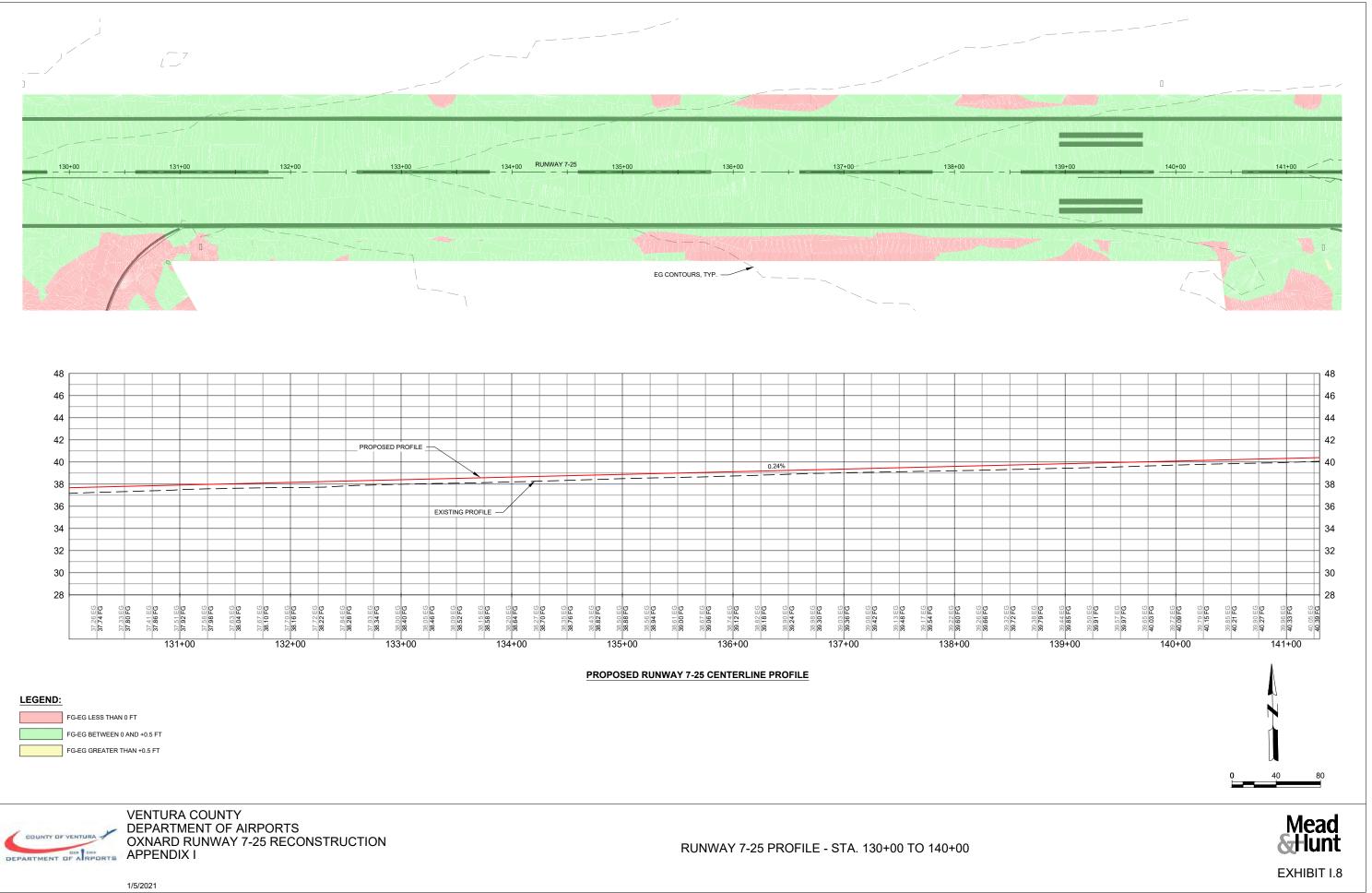

OXNARD RUNWAY 7-25 RECONSTRUCTION

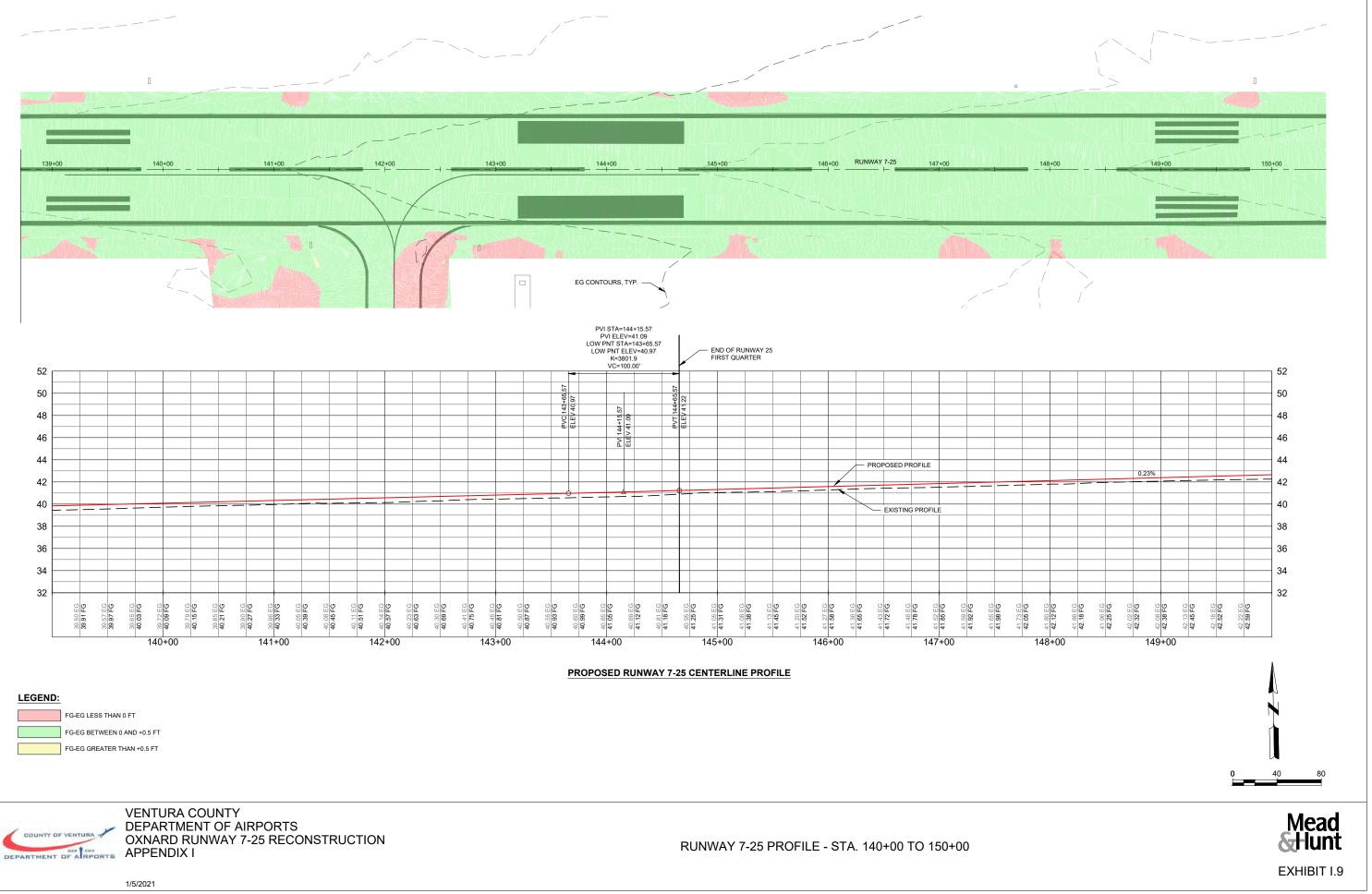

COUNTY OF VENTURA

DEPARTMENT OF A RPORTS


V2021 2:04:2 138400/1811




24/2021 1:59:44

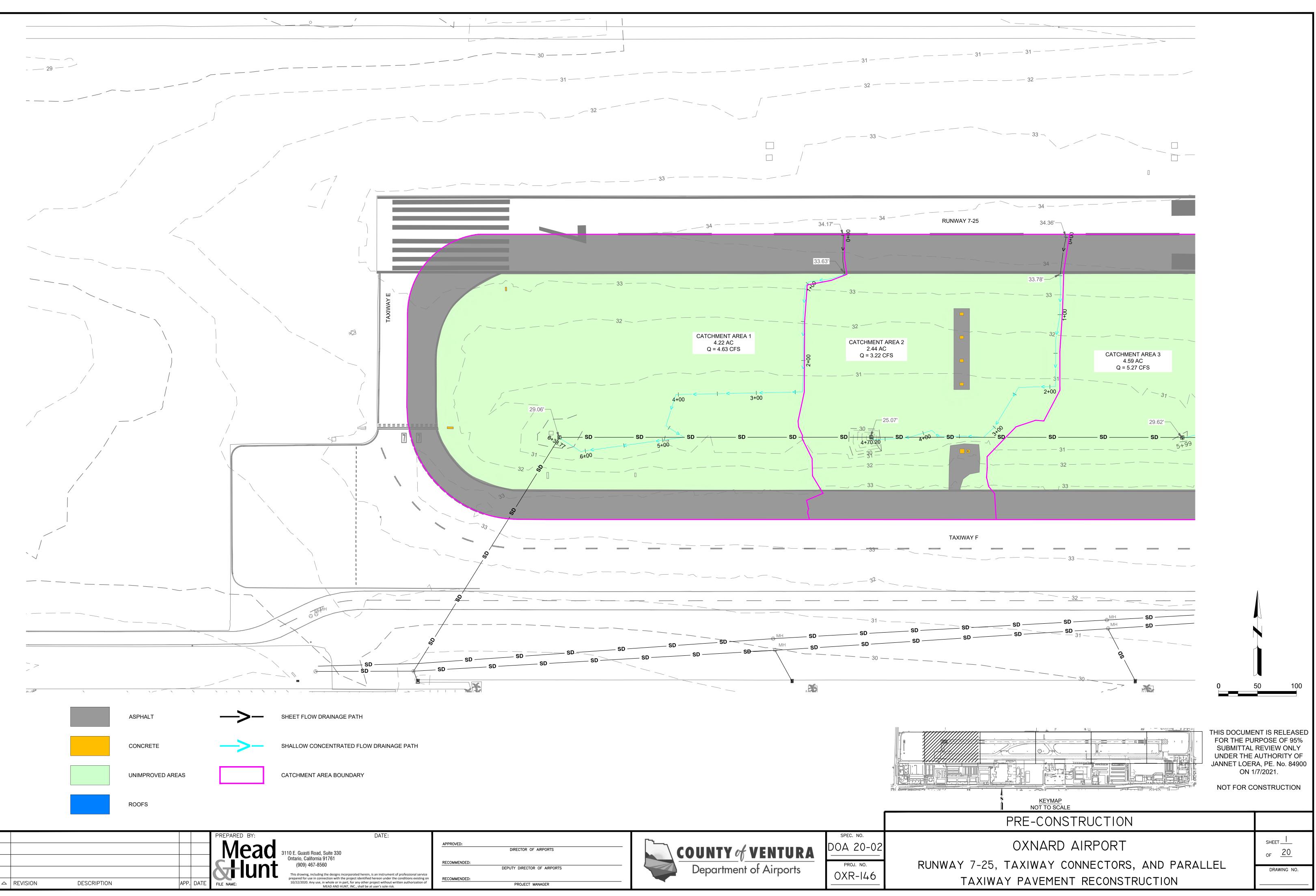

4/2021 1:59:57 3138400\1811

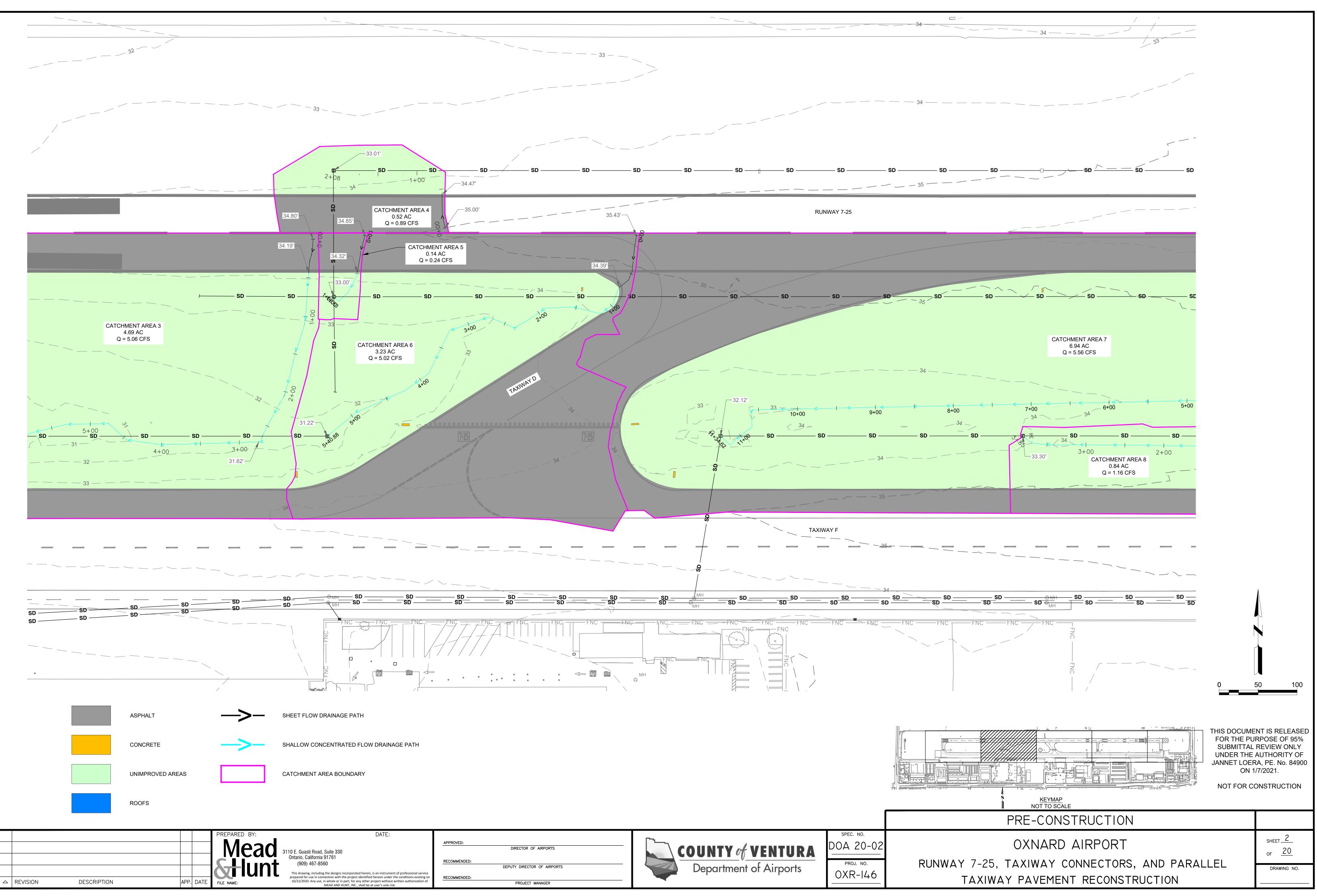
24/2021 2:00:10 (3138400\18111

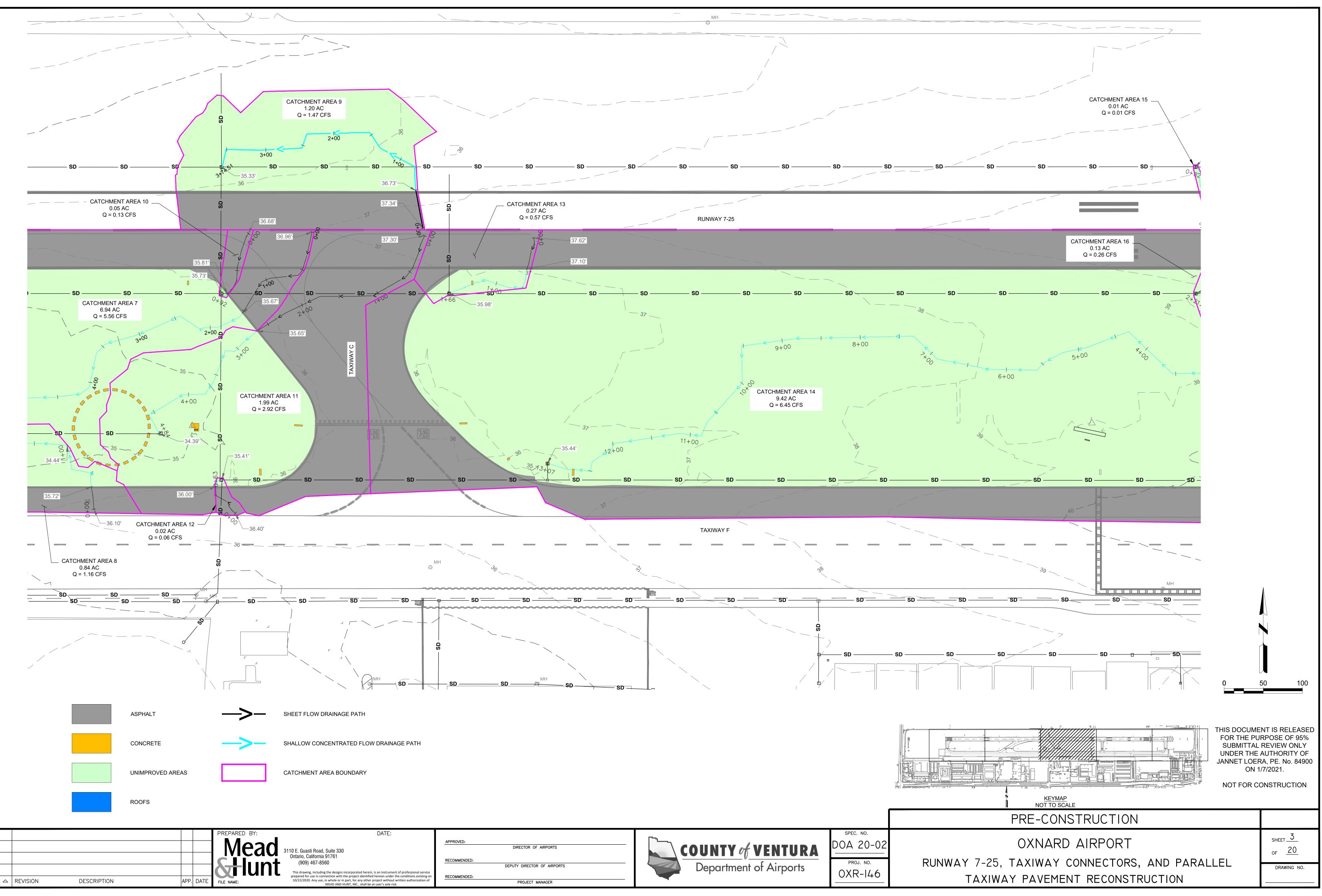
4/2021 2:00:20 3138400\1811

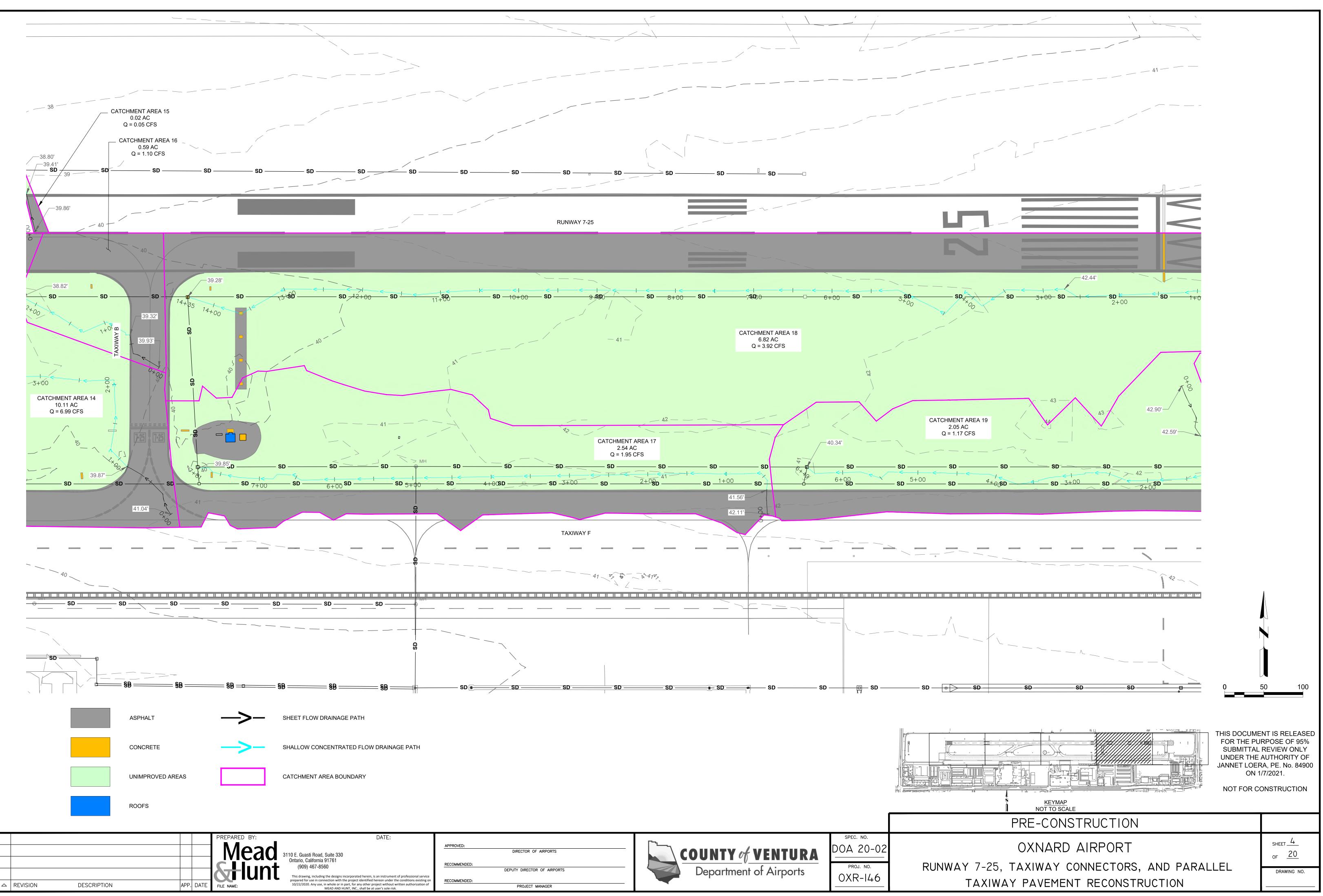
4/2021 2:00:33 3138400\18111

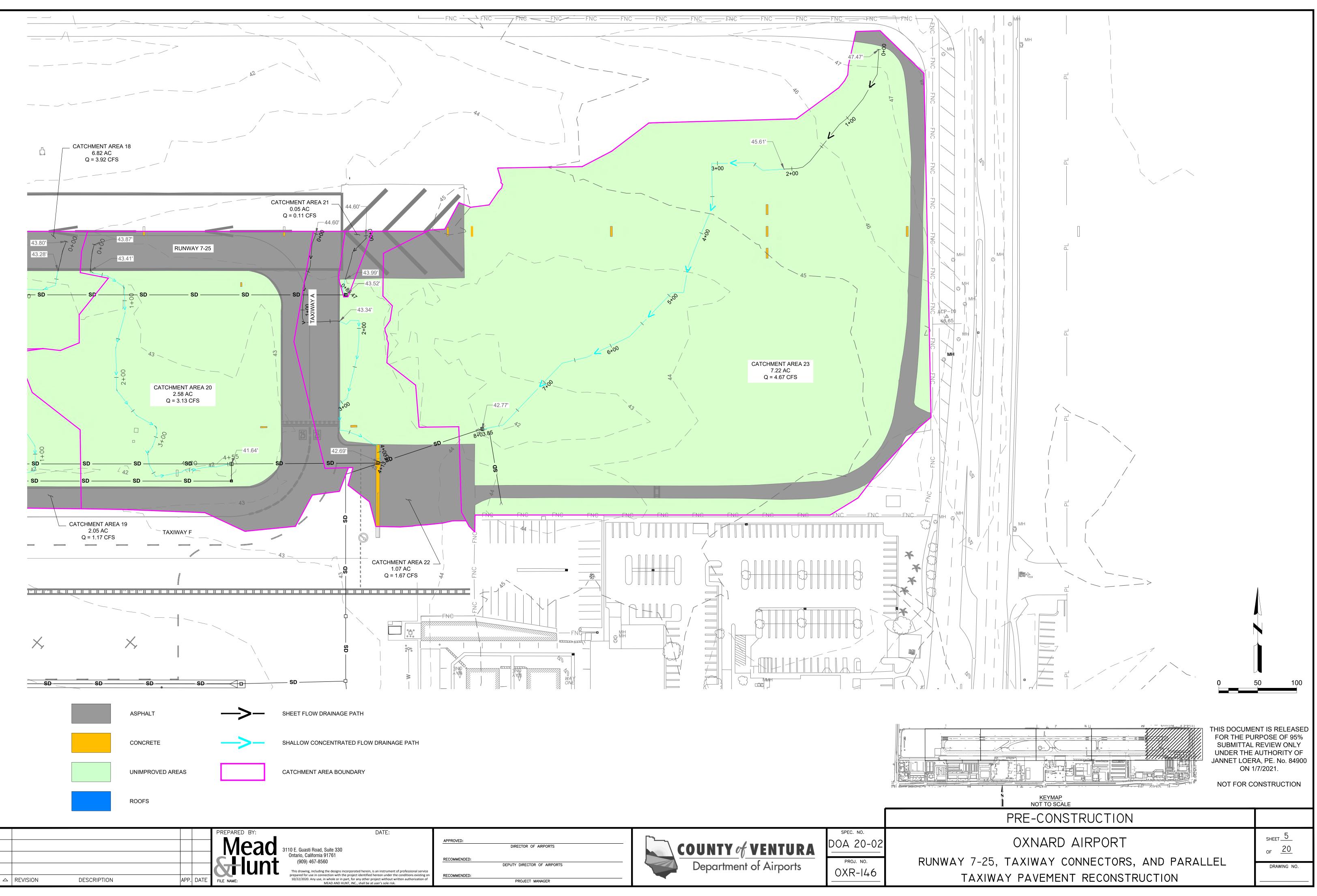
4/2021 2:00:52 3138400/18111

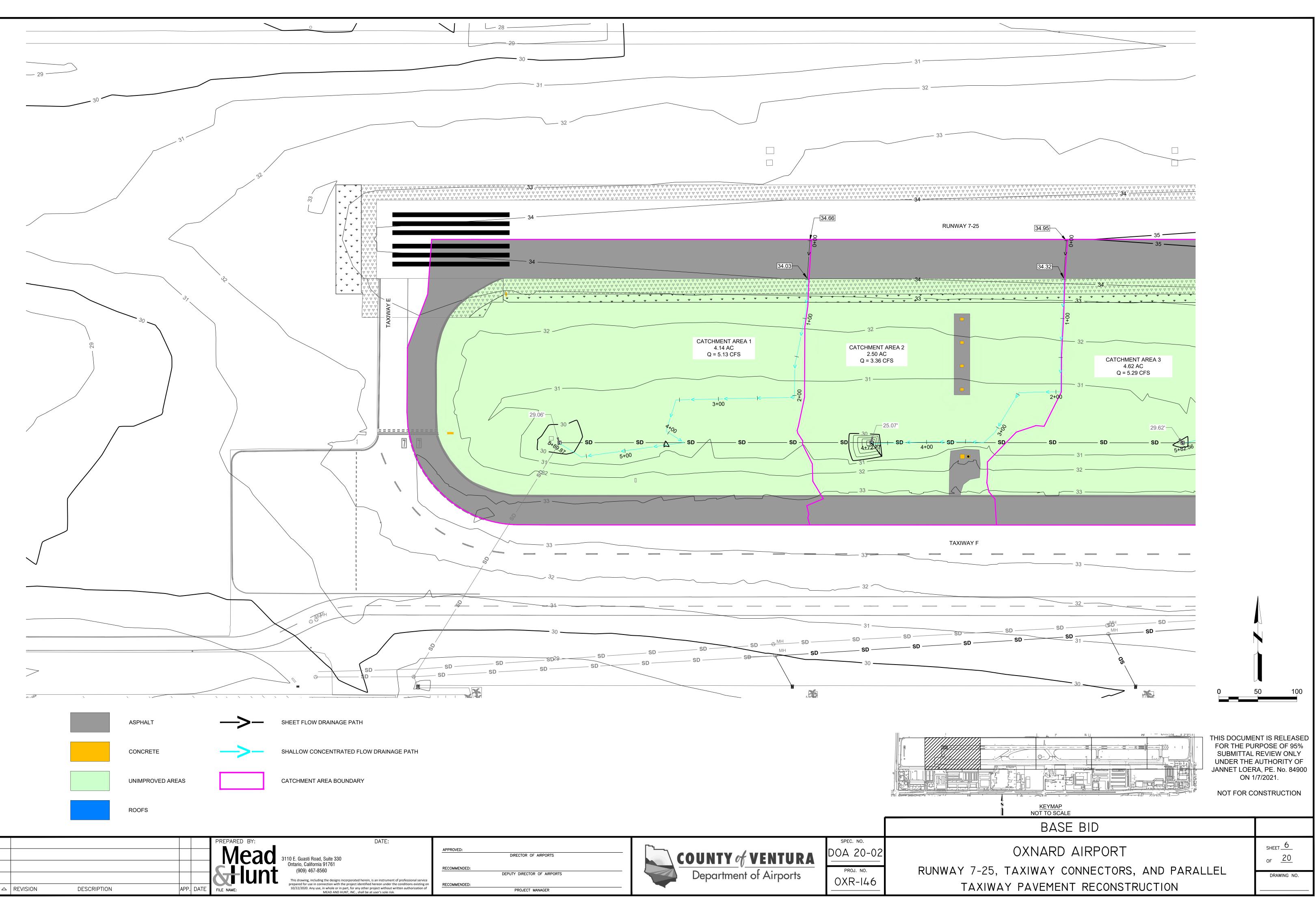

Appendix J – Drainage Catchment Areas

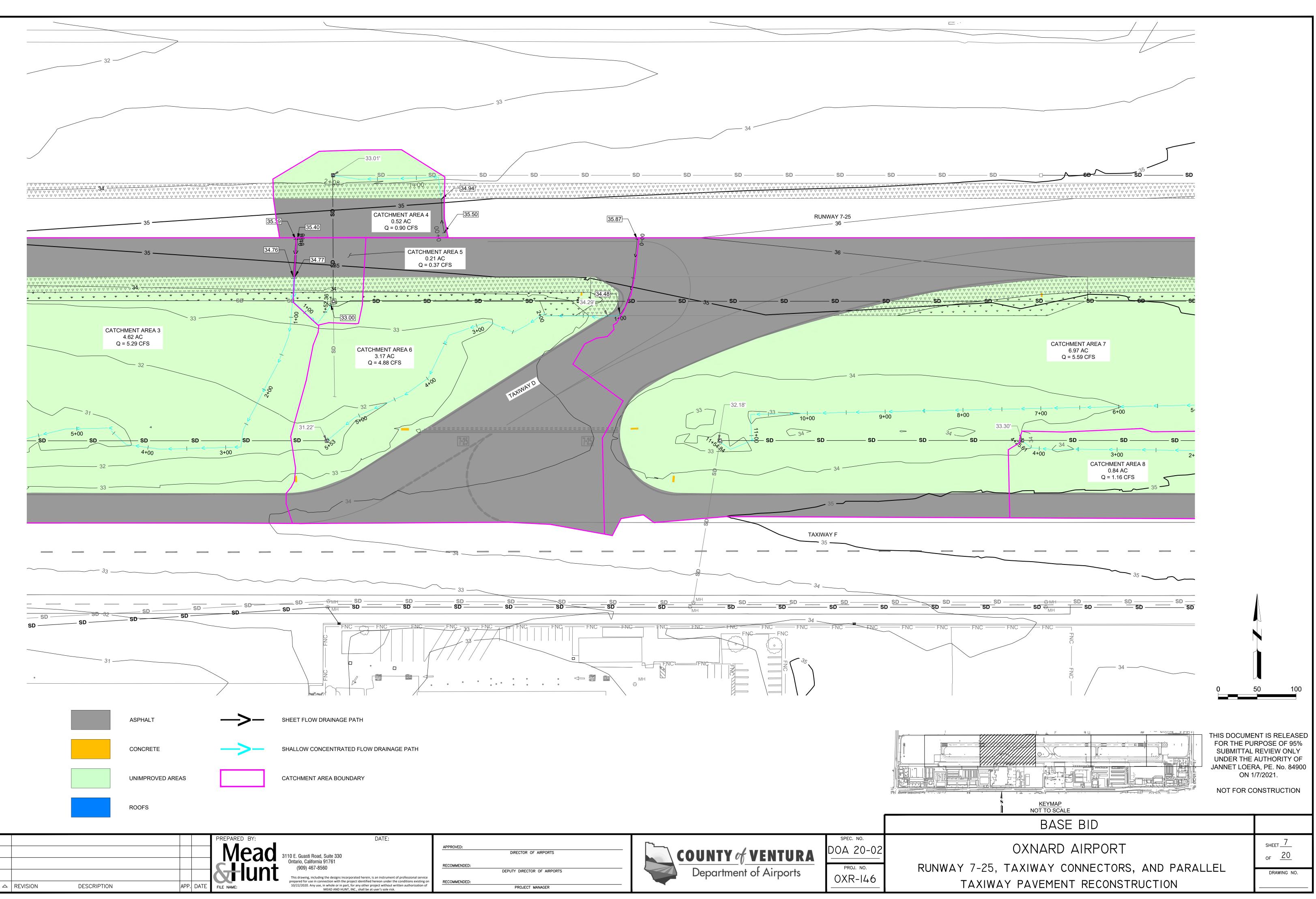

Mead & Hunt X:\3138400\181115.02\TECH\Design\Reports\Engineering\100%\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report-100% compiled wAppdx.docx

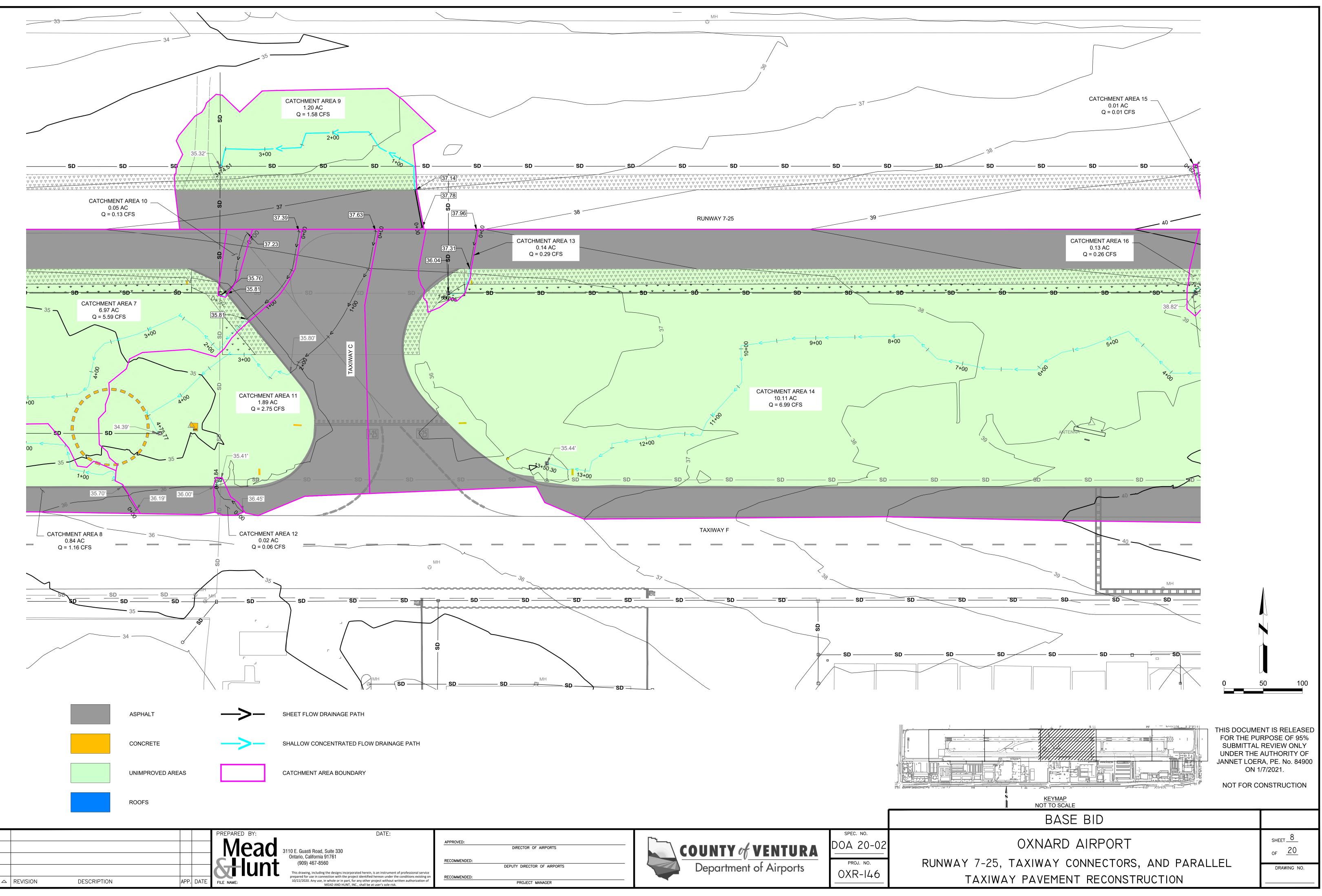

A12

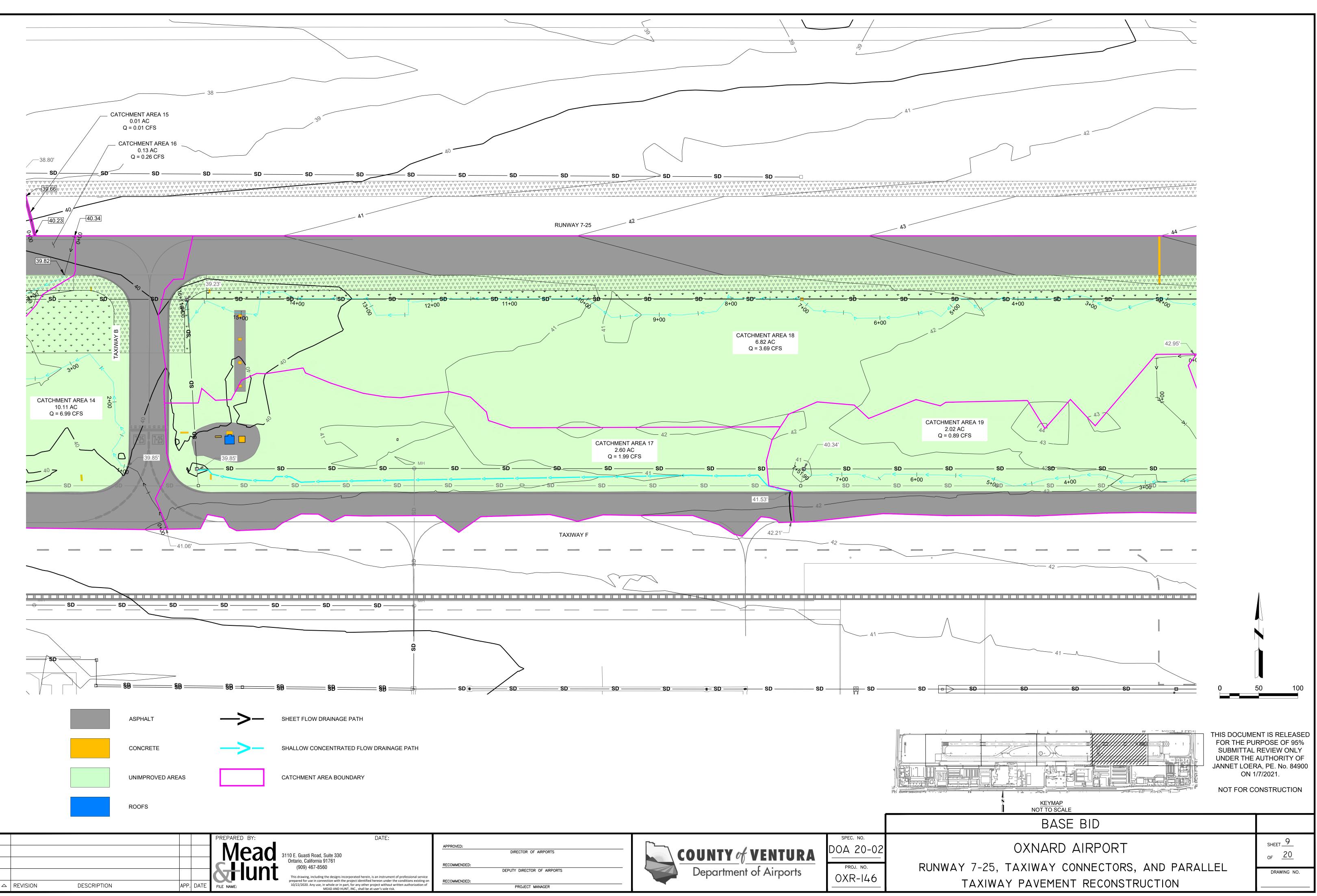

Catchment Area	Q, Peak Surface Flow Rate (CFS)						
	Pre-Construction	Construction Base Bid		Alternative 1		Alternative 2	
	Q _P	Q _B	% Diff	Q ₁	% Diff	Q ₂	% Diff
1	4.63	5.13	11%	5.08	10%	4.71	2%
2	3.04	3.17	4%	3.14	3%	3.05	0%
3	5.06	5.29	4%	5.11	1%	4.33	-14%
4	0.89	0.90	0%	0.90	0%	0.90	0%
5	0.24	0.37	54%	0.37	54%	0.25	5%
6	5.02	4.88	-3%	3.56	-29%	2.82	-44%
7A	- 5.56	5.59	1%	5.09	15%	4.89	- 7%
7B				1.31		1.03	
8	1.16	1.16	0%	1.16	0%	0.64	-45%
9	1.47	1.58	7%	1.58	7%	1.58	7%
10	0.13	0.13	0%	0.09	-28%	0.10	-25%
11	2.92	2.75	-6%	1.92	-34%	1.82	-38%
12	0.06	0.06	0%	0.06	0%	0.05	-24%
13	0.57	0.29	-48%	0.12	-78%	0.12	-78%
14A	6.45	6.99	8%	7.06	9%	1.56	-14%
14B						3.97	
15	0.05	0.01	-79%	0.01	-79%	0.01	-79%
16	1.10	0.26	-76%	0.19	-82%	0.19	-82%
17	1.95	1.99	3%	2.02	4%	1.51	-23%
18	3.92	3.69	-6%	3.90	0%	3.89	-1%
19	1.17	0.89	-24%	0.89	-24%	0.71	-39%
20	3.13	3.37	7%	3.49	12%	3.16	1%
21	0.11	0.01	-92%	0.06	-47%	0.06	-47%
22	1.67	1.87	12%	0.86	-48%	1.82	9%
23	4.67	5.14	10%	5.26	13%	5.10	9%

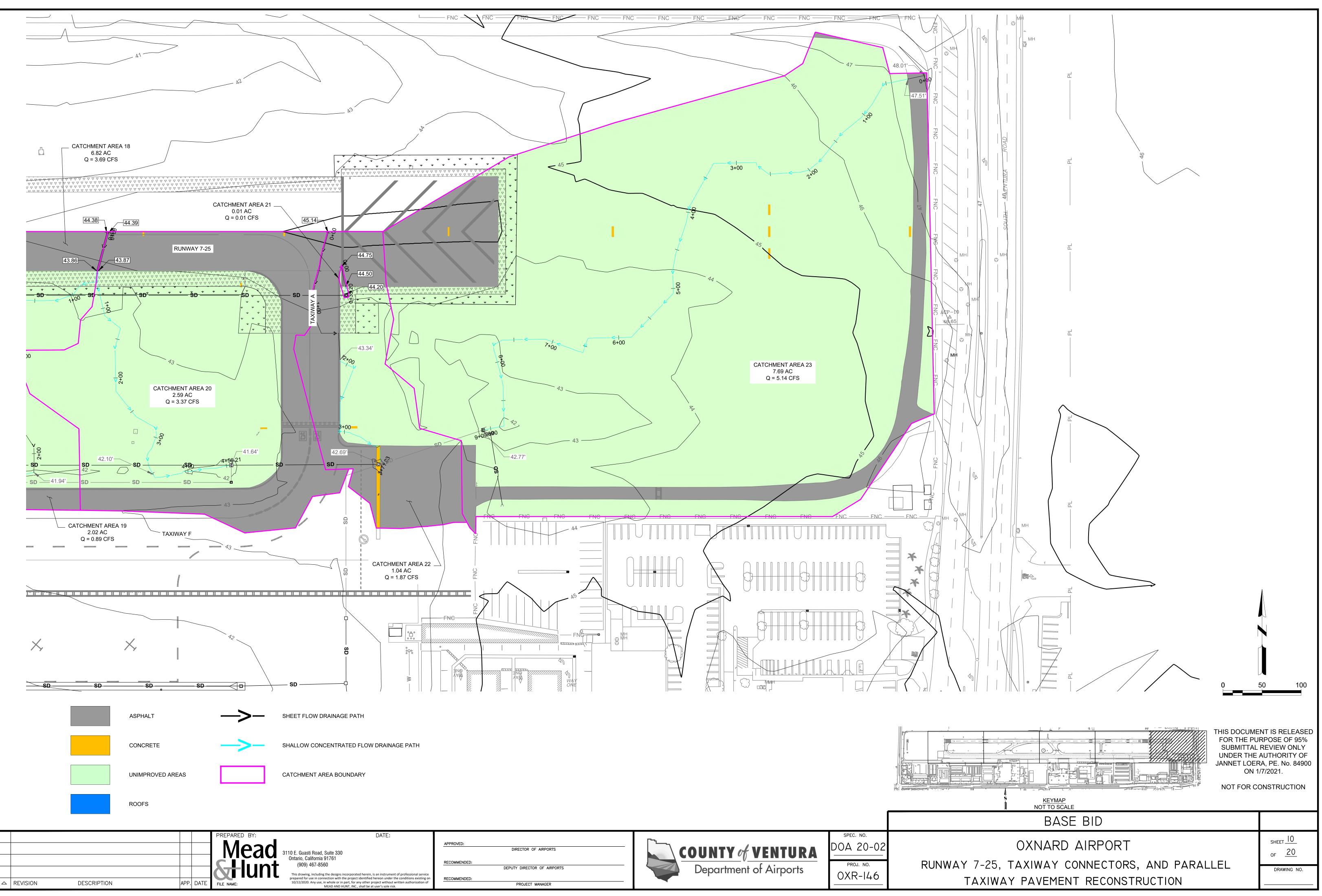

	Percent Difference between Pre-Construction and			
Legend	Post-Construction Flow Rate			
Black Text	Within 10% of Pre-Construction Flow Rate			
Red Text	Surface Flow Rate Increased by More than 10%			
Blue Text	Surface Flow Rate Decreased			

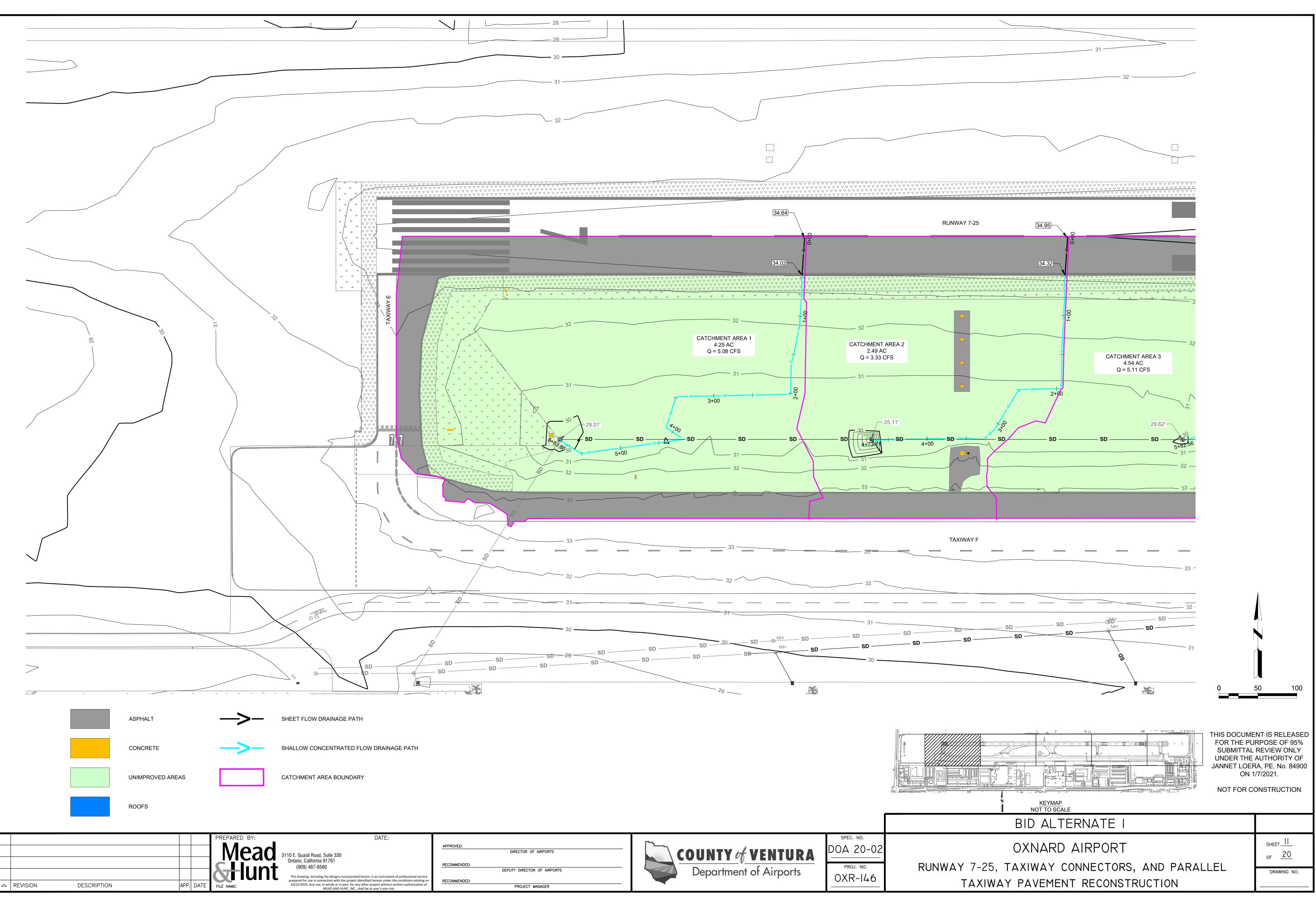


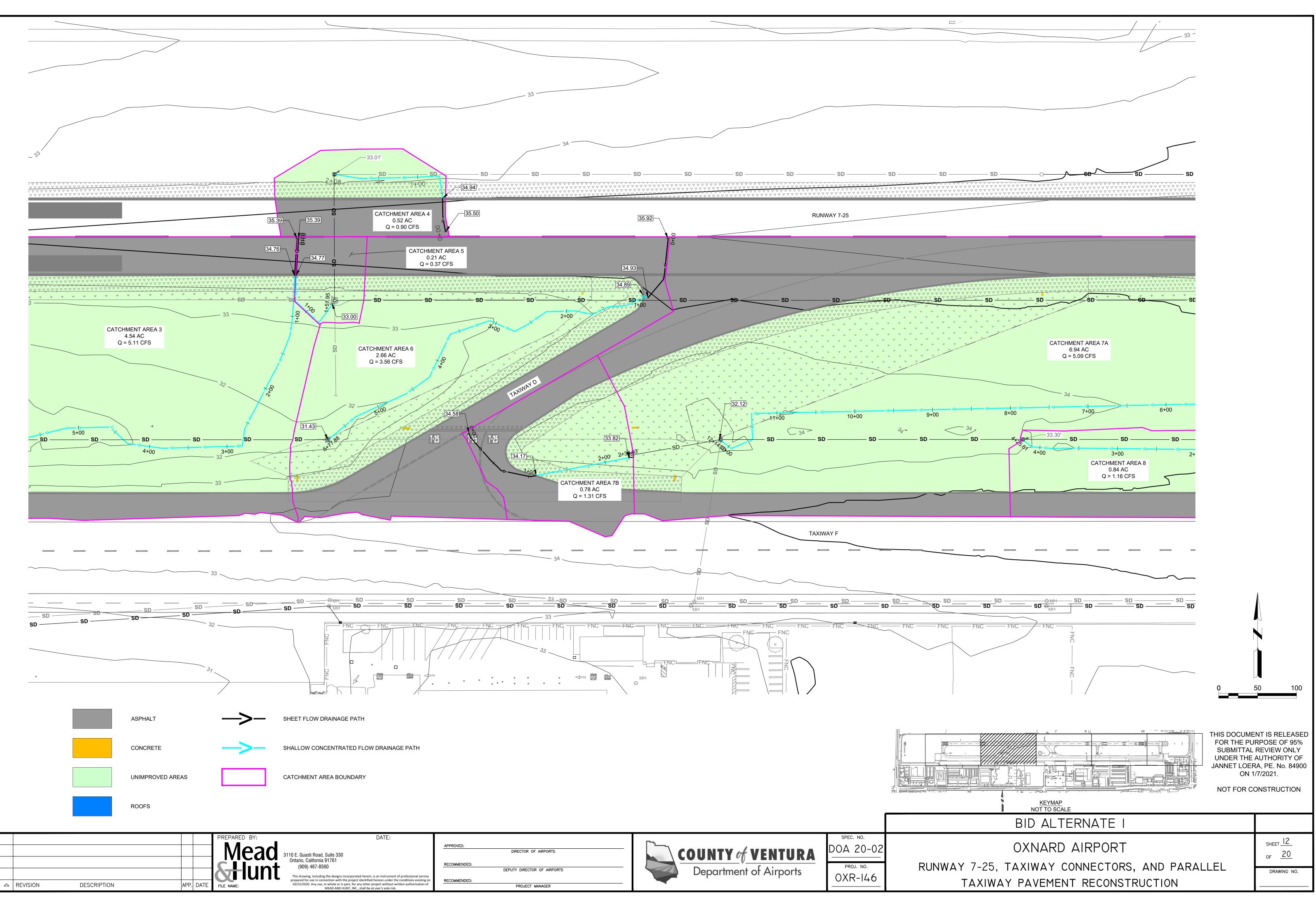


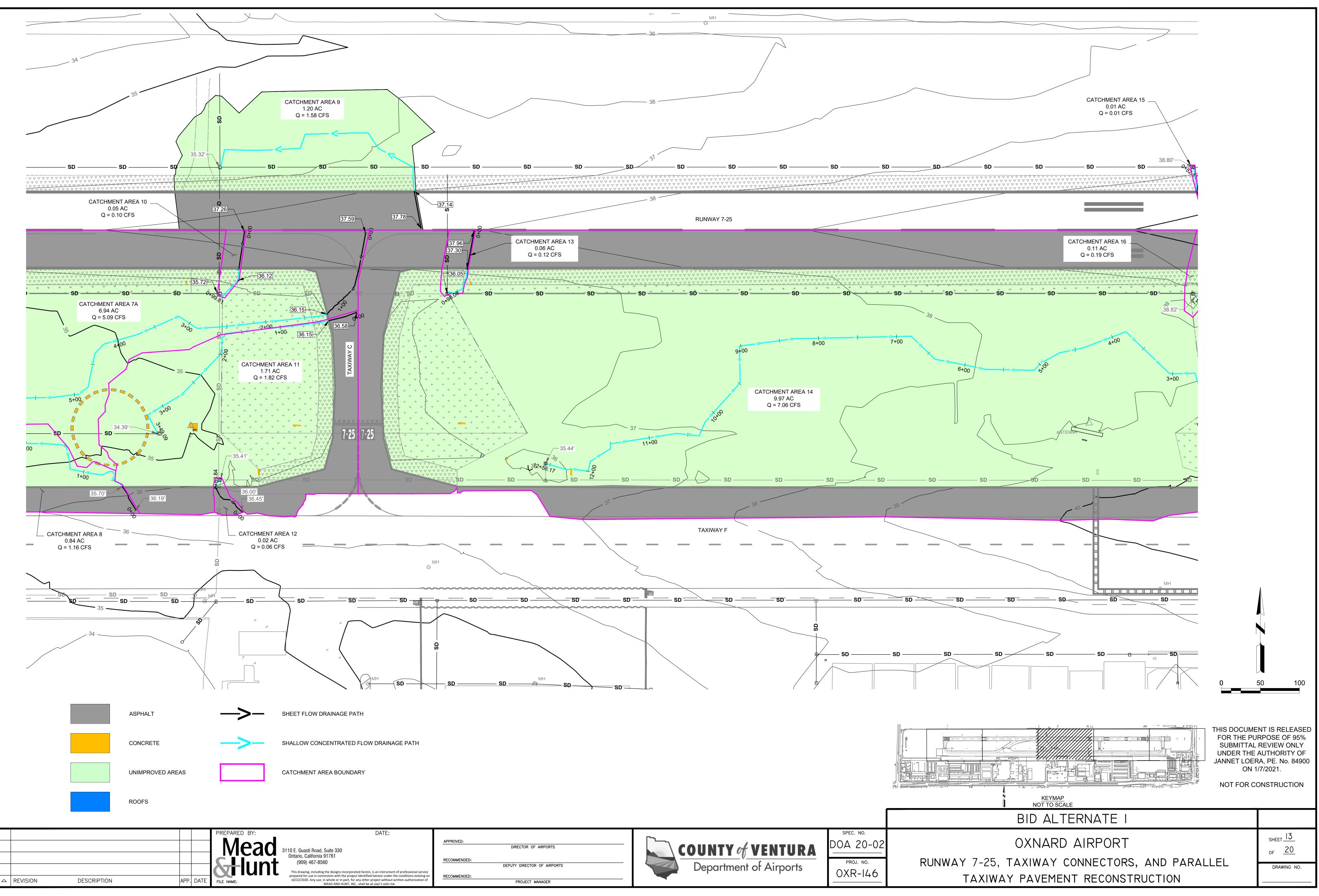


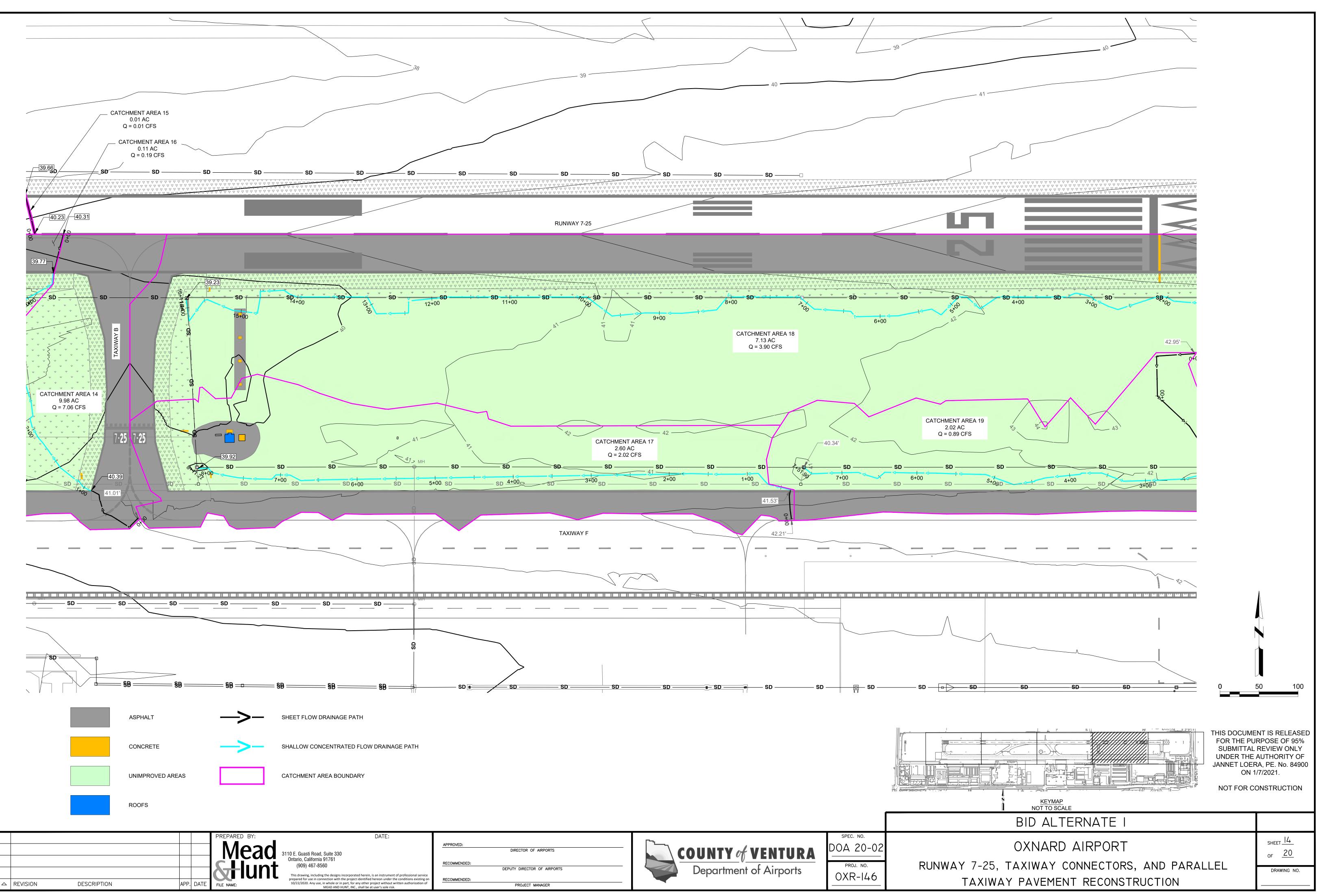


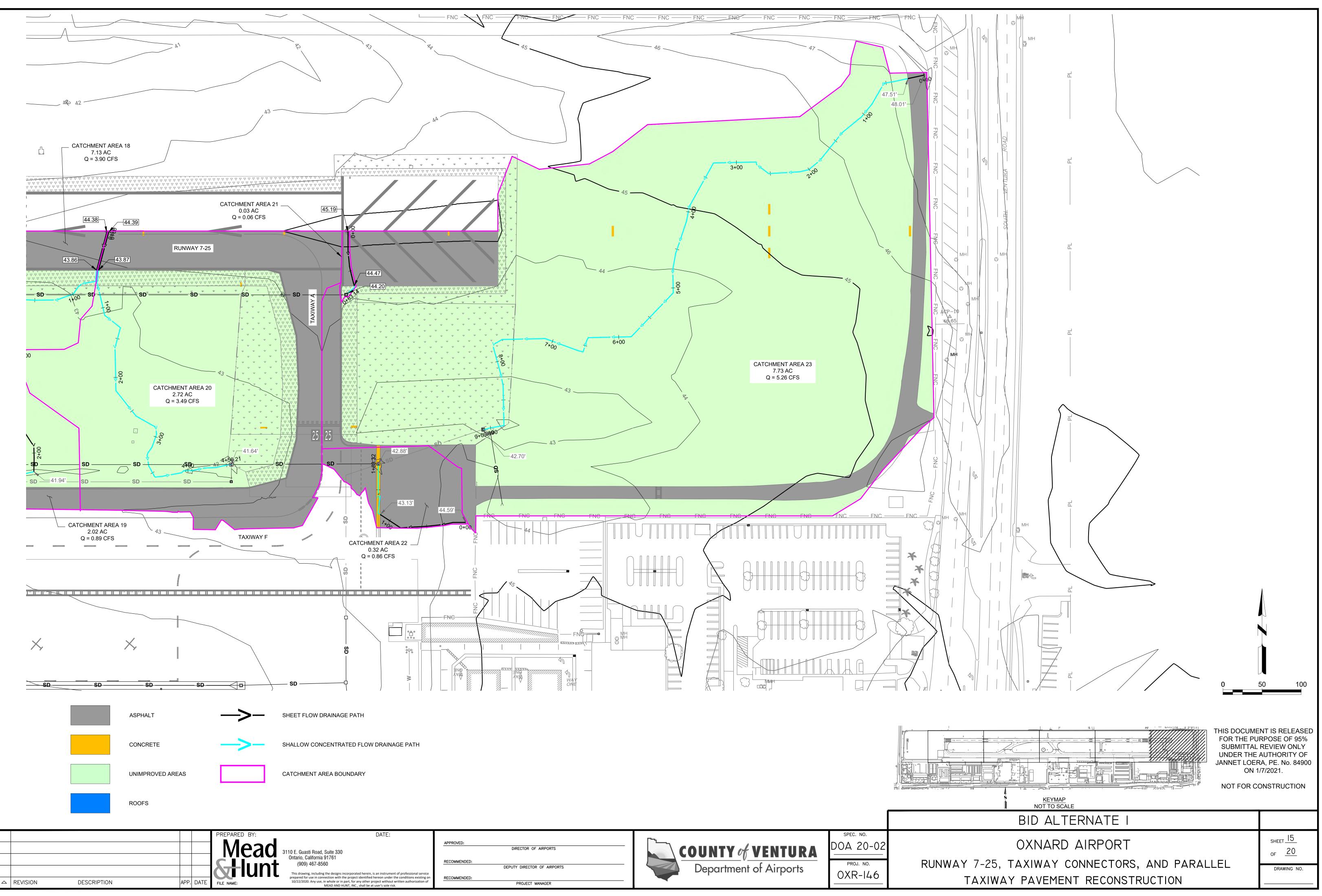


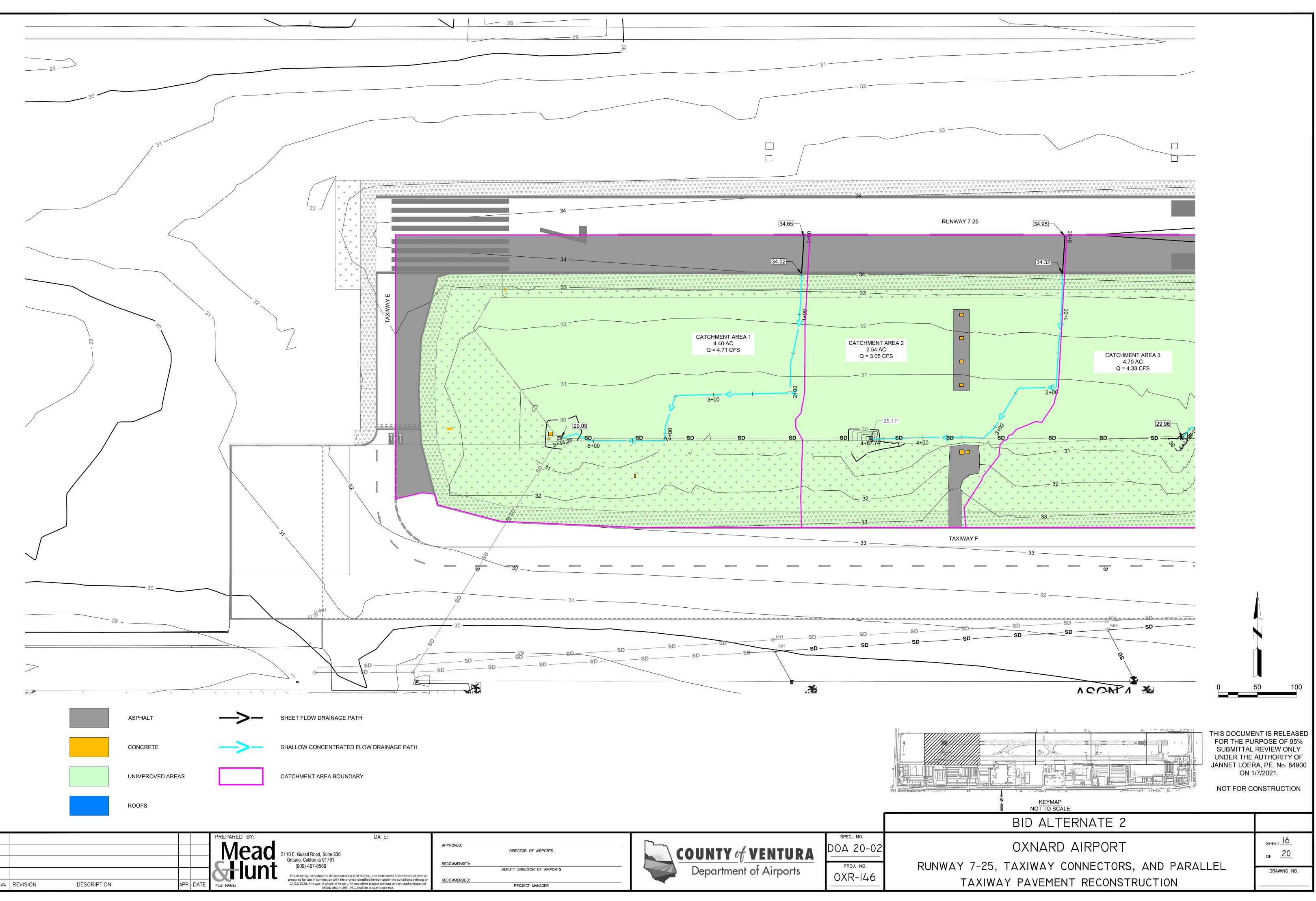


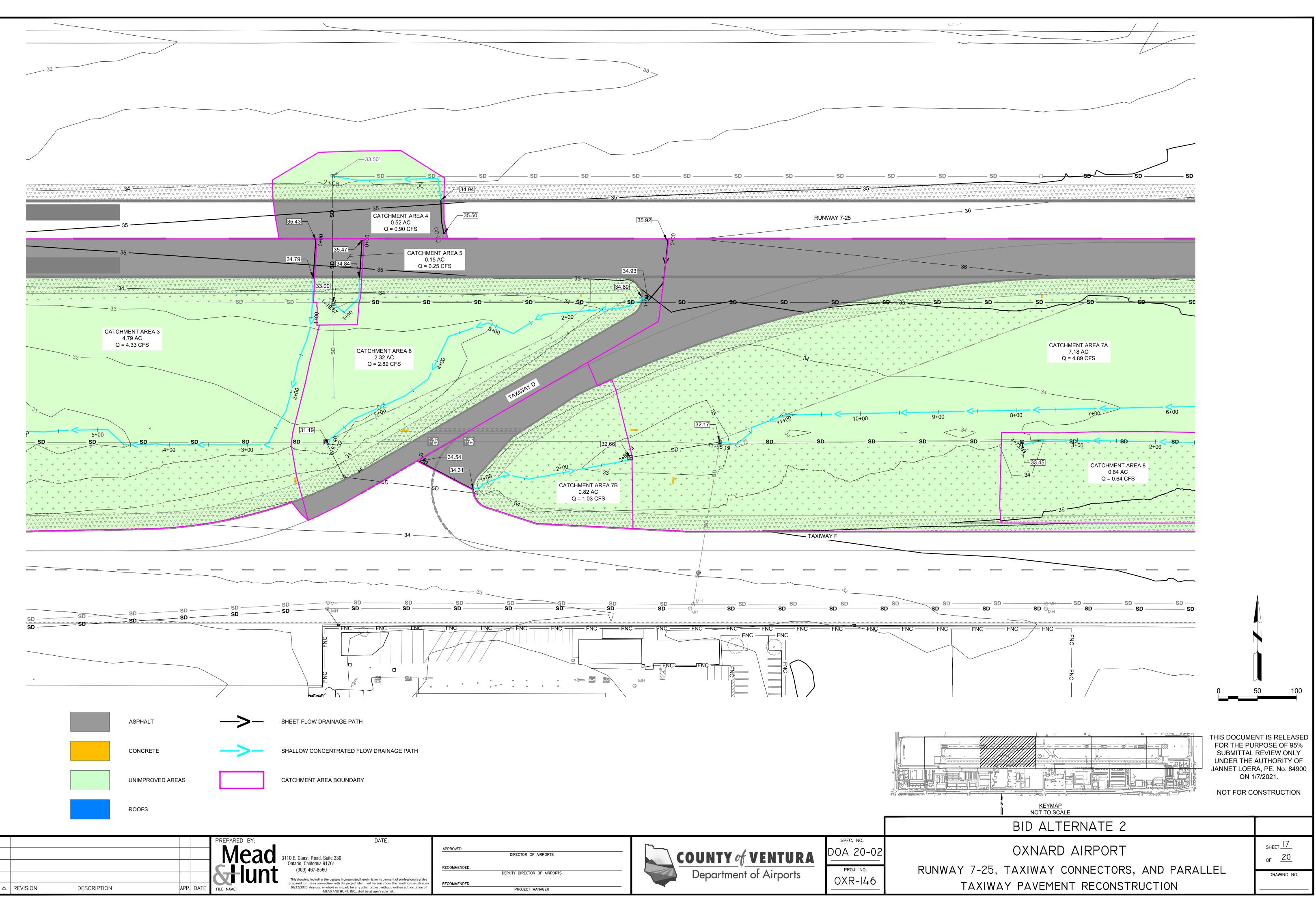


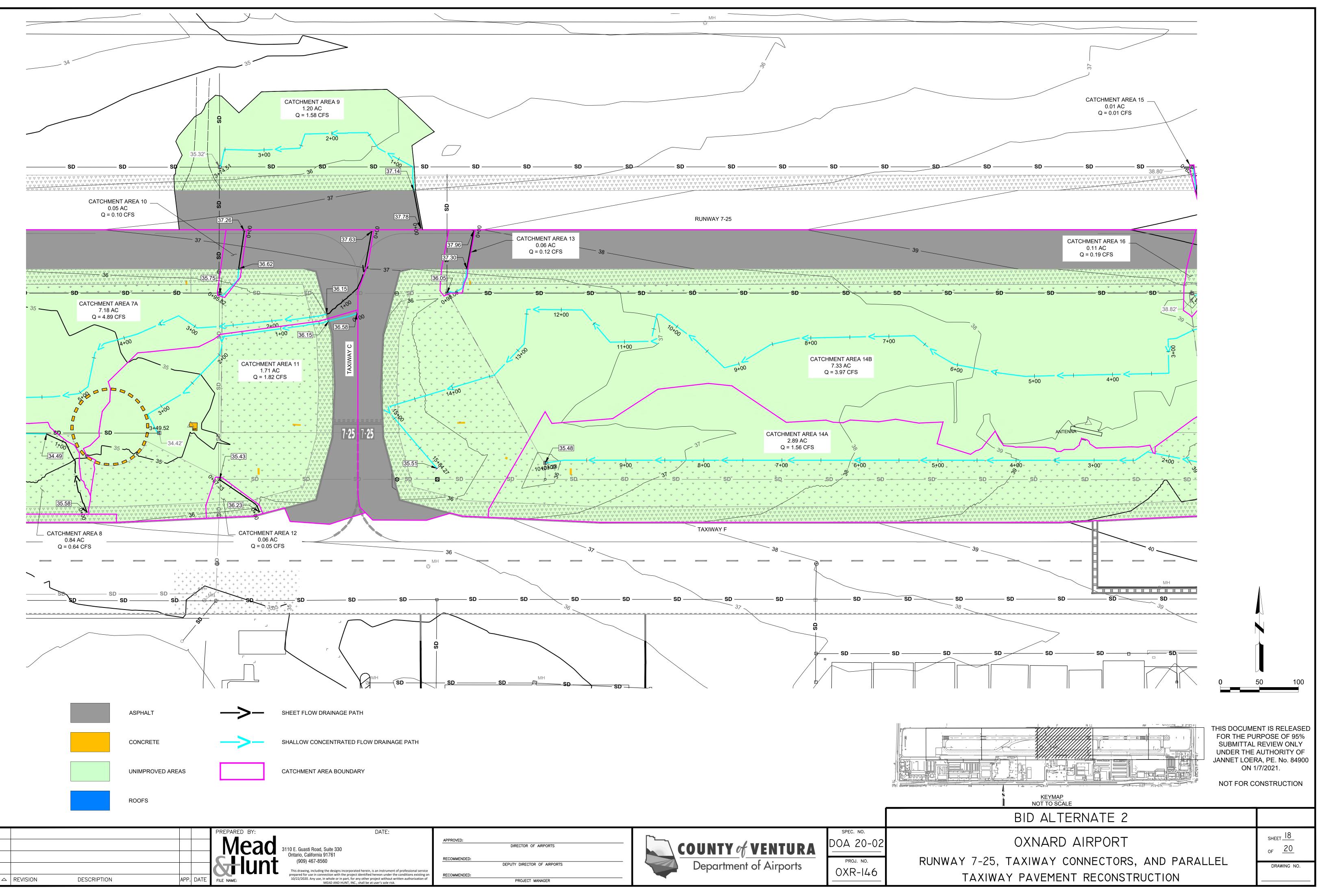




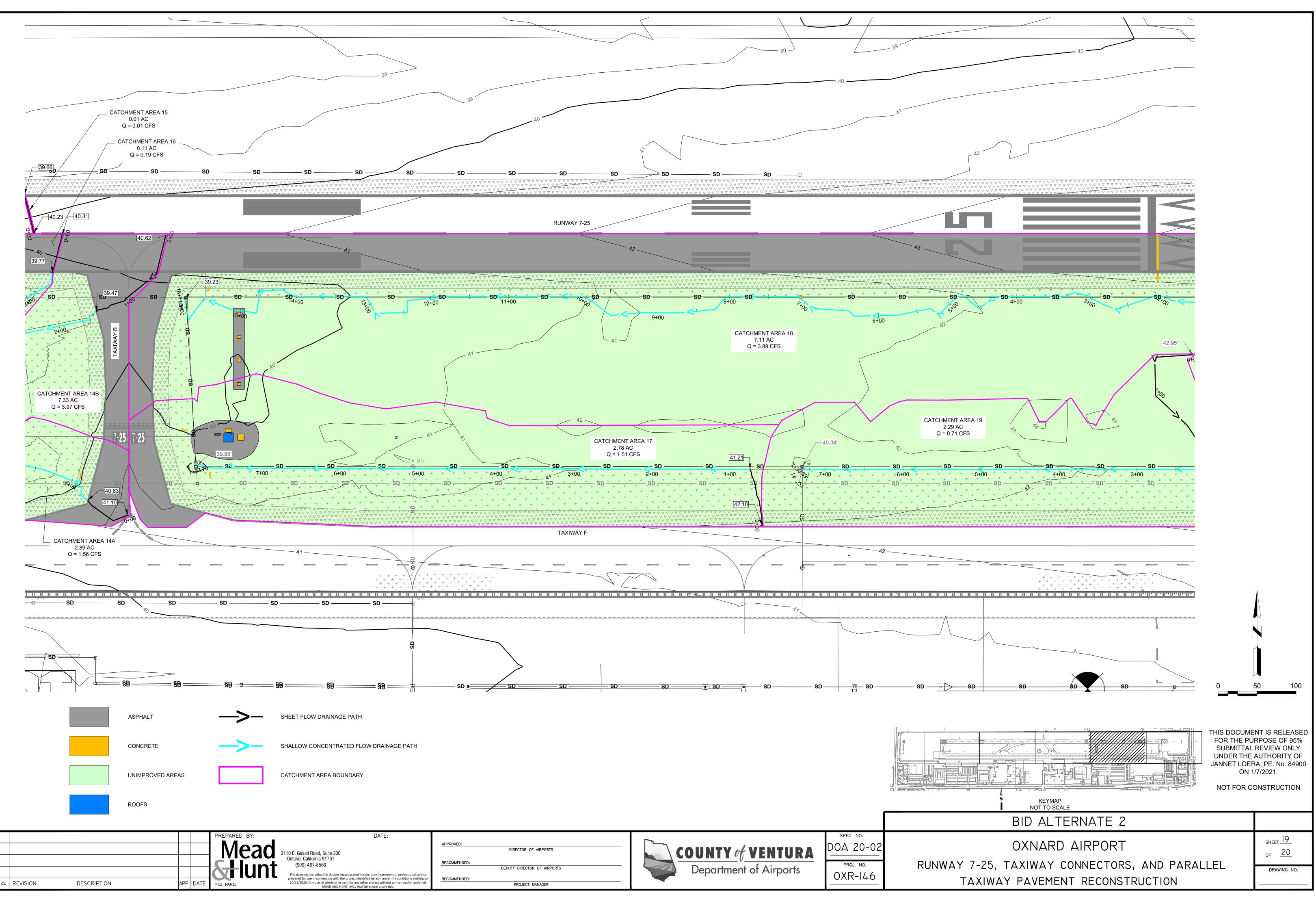


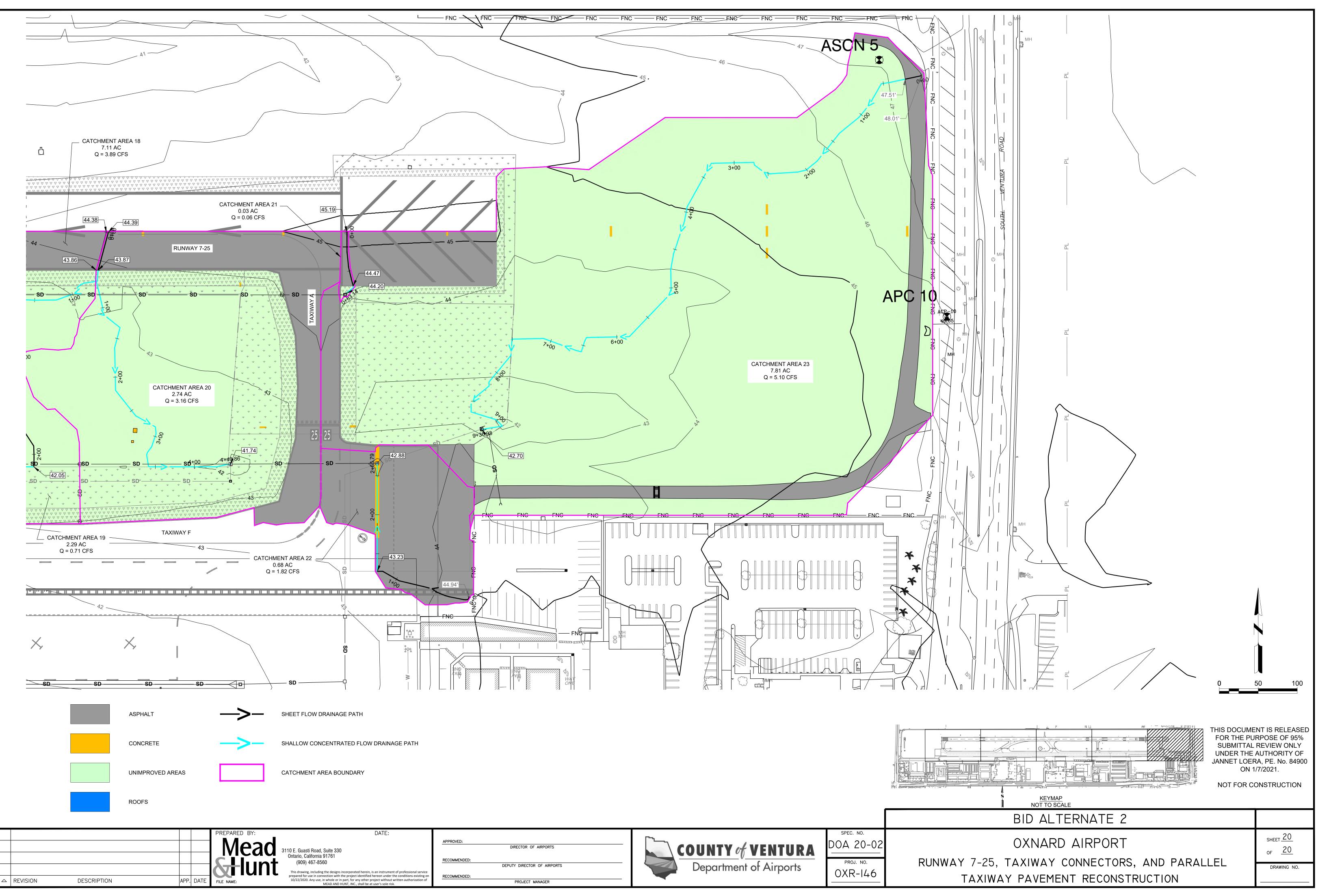






വ




APPROVED:

DECOMMENDED		

Appendix K - FAA CATEX Approval Letter

Mead & Hunt X:\3138400\181115.02\TECH\Design\Reports\Engineering\100%\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report-100% compiled wAppdx.docx

A13

U.S Department of Transportation

Federal Aviation Administration Western-Pacific Region Airports Division Los Angeles Airports District Office

777 S. Aviation Blvd., Suite 150 El Segundo, CA 90245

February 23, 2019

Mr. Jorge Rubio Deputy Director of Airports Department of Airports 555 Airport Way, Suite B Camarillo, CA 93010

Dear Mr. Rubio:

Oxnard Airport Pavement Reconstruction of Runway 7-25 and Connector Taxiways A, B, C, D, and E Categorical Exclusion Approval

The FAA has determined that the proposed project is Categorically Excluded pursuant to FAA Order 1050.1F as it relates to the National Environmental Policy Act of 1969, as amended (NEPA). Therefore, no further federal environmental disclosure documentation for this project is necessary for NEPA purposes.

In the event that you do not begin the above identified projects within 3 years, of this Categorical Exclusion Approval, additional environmental review may be necessary (See Section 202(c)(3)(a) of FAA Order 5050.4B, *National Environmental Policy Act (NEPA) Implementing Instructions for Airport Actions*).

This letter notifies you that the proposed project has complied with NEPA only. This is not a notice of final project approval or funding availability.

Please feel free to call me if you have any questions regarding this matter, I can be reached at 424-405-7269.

Sincerely,

al Camp 20-

Gail Campos Environmental Protection Specialist

DESCRIPTION OF A DESCRI

U.S Department of Transportation

Federal Aviation Administration

June 12, 2020

Erin Powers Projects Administrator County of Ventura, Dept. of Airports 555 Airport Way, Suite B Camarillo, CA 93010

Dear Ms. Powers:

Western-Pacific Region Office of Airports Los Angeles Airports District Office

777 S. Aviation Blvd., Suite 150 El Segundo, CA 90245

Oxnard Airport (OXR) Pavement Reconstruction of Runway 7-25, Blast Pad, and Connector Taxiways A, B, C, D, and E Categorical Exclusion Approval

The Federal Aviation Administration (FAA) has determined that the proposed project is Categorically Excluded pursuant to FAA Order 1050.1F, as it relates to the National Environmental Policy Act of 1969, as amended (NEPA). Therefore, no further federal environmental disclosure documentation for this project is necessary for NEPA purposes.

In the event that you do not begin the above identified projects within 3 years, of this Categorical Exclusion Approval, additional environmental review may be necessary (See Section 202(c)(3)(a) of FAA Order 5050.4B, *National Environmental Policy Act (NEPA) Implementing Instructions for Airport Actions*).

This letter notifies you that the proposed project has complied with NEPA only. This is not a notice of final project approval or funding availability.

Feel free to contact me if you have any questions regarding this matter. I can be reached via phone at (424) 405-7269 or email at <u>gail.campos@faa.gov</u>.

Sincerely,

GAIL MARIE CAMPOS Date: 2020.06.12 15:18:13 -07'00'

Gail Campos Environmental Protection Specialist

U.S Department of Transportation

Federal Aviation Administration

January 27, 2021

Erin Powers Projects Administrator County of Ventura, Dept. of Airports 555 Airport Way, Suite B Camarillo, CA 93010

Dear Ms. Powers:

Western-Pacific Region Office of Airports Los Angeles Airports District Office

777 S. Aviation Blvd., Suite 150 El Segundo, CA 90245

Oxnard Airport (OXR) Taxiway F Reconstruction Categorical Exclusion Approval

The Federal Aviation Administration (FAA) has determined that the proposed project is Categorically Excluded pursuant to FAA Order 1050.1F, as it relates to the National Environmental Policy Act of 1969, as amended (NEPA). Therefore, no further federal environmental disclosure documentation for this project is necessary for NEPA purposes.

In the event that you do not begin the above identified projects within 3 years, of this Categorical Exclusion Approval, additional environmental review may be necessary (See Section 202(c)(3)(a) of FAA Order 5050.4B, *National Environmental Policy Act (NEPA) Implementing Instructions for Airport Actions*).

This letter notifies you that the proposed project has complied with NEPA only. This is not a notice of final project approval or funding availability.

Feel free to contact me if you have any questions regarding this matter. I can be reached via phone at (424) 405-7269 or email at <u>gail.campos@faa.gov</u>.

Sincerely,

GAIL MARIE Digitally signed by GAIL MARIE CAMPOS Date: 2021.01.27 17:25:32 -08'00'

Gail Campos Environmental Protection Specialist

Appendix L - Engineer's Estimate of Probable Cost

Mead & Hunt X:\3138400\181115.02\TECH\Design\Reports\Engineering\100%\OXR Rwy 7-25, Twy Conns & Parallel Twy Pvmt Recon Report-100% compiled wAppdx.docx

A14

Oxnard Airport, Ventura County Engineer's Estimate of Probable Cost 100% Design Phase

Total Project Cost								
		BASE BID		BID ALT 1		BID ALT 2		TOTAL
CONSTRUCTION COST	\$	12,683,636.00	\$	3,328,580.00	\$	10,378,830.00	\$	26,391,046.00
COUNTY ADMINISTRATION (2%)	\$	254,000.00	\$	67,000.00	\$	208,000.00	\$	529,000.00
PRELIMINARY DESIGN	\$	157,640.00					\$	157,640.00
FINAL DESIGN	\$	700,348.74	\$	423,215.55	\$	383,744.85	\$	1,507,309.14
TOPOGRAPHIC SURVEY	\$	26,795.00					\$	26,795.00
GEOTECHNICAL INVESTIGATION	\$	79,925.00			\$	96,770.00	\$	176,695.00
RESIDENT ENGINEERING (5.5%)	\$	698,000.00	\$	184,000.00	\$	571,000.00	\$	1,453,000.00
MATERIALS TESTING (1.5%)	\$	191,000.00	\$	50,000.00	\$	156,000.00	\$	397,000.00
CONSTRUCTION ADMINISTRATION (5%)	\$	634,200.00	\$	166,500.00	\$	519,000.00	\$	1,319,700.00
REIMBURSABLE AGREEMENT	\$	150,000.00	\$	-	\$	-	\$	150,000.00
CONSTRUCTION CONTINGENCY (3%)	\$	380,509.08	\$	99,857.40	\$	311,364.90	\$	791,731.38
TOTAL	\$	15,956,053.82	\$	4,319,152.95	\$	12,624,709.75	\$	32,899,916.52
Total Adjusted for Price Escalation (2022)		\$16,275,174.90		\$4,405,536.01		\$12,877,203.95		\$33,557,914.85
Total Adjusted for Price Escalation (2023)		\$16,600,678.39		\$4,493,646.73		\$13,134,748.02		\$34,229,073.15
Total Adjusted for Price Escalation (2024)		\$16,932,691.96		\$4,583,519.66		\$13,397,442.98		\$34,913,654.61
Total Adjusted for Price Escalation (2025)		\$17,271,345.80		\$4,675,190.06		\$13,665,391.84		\$35,611,927.70

Note: Price Escalation assumes 2% per year

Oxnard Airport, Ventura County Engineer's Estimate of Probable Cost

Base Bid - Runway Pavement Reconstruction

This project will consist of a full reconstruction of the structural section, including strengthening of the subgrade. Base Bid consists of the runway. Based on the fleet mix, the pavement section is anticipated to be composed of 4 inches of P-401 asphalt surface course, 8.5 inches of P-209 crushed aggregate base course, and 16 inches of lime-treated subgrade. Grading will extend into the infields to accomplish positive drainage, however full infield RSA compliance is not included in this estimate. The estimated cost for Base Bid is as follows:

		SCHEDULE A: BASE BID WORK				
Item		Description	Unit	Qty	Cost	Total
1		Contractor Quality Control Program (CQCP)	LS	1	\$103,000.00	\$103,000.00
2	C-105.1	Mobilization Resident Project Engineer's Field Office	LS	1	\$1,028,000.00	\$1,028,000.00
3		Compliance with Pollution, Erosion, and Siltation Control	LS LS	1	\$26,000.00 \$103,000.00	\$26,000.00 \$103,000.00
5		Airfield Safety and Traffic Control	LS	1	\$206,000.00	\$206,000.00
6	SP-100-3.2	Construction Staking and Survey Layout	LS	1	\$103,000.00	\$103,000.00
7		Airport Access and Haul Route Repair	SY	2,000	\$35.00	\$70,000.00
8	SP-100-3.8	Underground Utility Investigation and Potholing	HOUR	16	\$550.00	\$8,800.00
9	P-101-5.1	Demolish Asphalt Pavement	SY	68,500	\$9.00	\$616,500.00
10 11	SP-126-4.1 SP-126-4.2a	Remove and Salvage REILs. Demolish PCC Foundation Demolish Conduit, Cable, and Counterpoise	LF	1 1,000	\$2,500.00 \$8.00	\$2,500.00 \$8,000.00
12	SP-126-4.2b	Demolish Concrete Encased Conduit, Cable, and Counterpoise	LF	460	\$30.00	\$13,800.00
13		Remove Cable and Counterpoise	LF	10,800	\$1.00	\$10,800.00
14	SP-126-4.6	Demolish Electrical Junction Can	EA	2	\$800.00	\$1,600.00
15		Demolish FAA Pullbox	EA	2	\$1,200.00	\$2,400.00
16	SP-126-4.8	Demolish Airfield Sign and Pad	EA	5	\$1,200.00	\$6,000.00
17	SP-126-4.9b	Remove and Salvage Elevated Runway Edge Light Fixture and Transformer. Protect Can.	EA	53	\$200.00	\$10,600.00
18	SP-126-4.9c	Remove and Salvage Elevated Threshold Light Fixture and Transformer. Protect Can.	EA	24	\$400.00	\$9,600.00
19		Demolish MALSF Threshold Bar (13 Lights). Salvage Existing Fixtures.	EA	1	\$13,000.00	\$13,000.00
20	SP-126-4.14	Demolish MALSF Centerline Bar (5 Lights). Salvage Existing Fixtures.	EA	3	\$5,000.00	\$15,000.00
21		Demolish Reinforced Concrete Foundation from Abandoned MALSF Bars	LS	1	\$20,000.00	\$20,000.00
22 23	SP-126-4.17 P-152-4.1	Demolish Abandoned Waterline, if Encountered Unclassified Excavation and Haul-off	LF CY	410 18,500	\$25.00 \$40.00	<mark>\$10,250.00</mark> \$740,000.00
23 24		Embankment in Place	CY CY	18,500	\$40.00 \$12.00	\$740,000.00 \$162,000.00
24		Subgrade Preparation	SY	94,100	\$3.00	\$282,300.00
26		Place Asphalt Compacted Grindings, 24-inches thick	SY	8,300	\$10.00	\$83,000.00
27	P-155-8.1	Lime Treated Subgrade, 16-Inch Depth	SY	72,500	\$16.50	\$1,196,250.00
28		In-place Drying Techniques	SY	7,300	\$1.50	\$10,950.00
29		Subgrade Stabilization, Excavation Below Subgrade Multi-axial Geogrid	CY	1,500	\$70.00	\$105,000.00
30 31	SP-100-3.6 P-209-5.1	Crushed Aggregate Base Course, P-209	SY CY	2,200 25,900	\$6.00 \$75.00	\$13,200.00 \$1,942,500.00
32	P-401-8.1	Asphalt Concrete Surface Course, P-401	TON	17,100	\$165.00	\$2,821,500.00
33	P-621-5.1	Grooving	SY	52,700	\$7.00	\$368,900.00
34	SP-100-3.9	Install Runway Threshold Survey Monument	EA	2	\$5,000.00	\$10,000.00
35		Install Checkpoint Markers	LS	1	\$10,000.00	\$10,000.00
36		12-inch RCP, Class IV, outside Pavement Areas	LF	750	\$250.00	\$187,500.00
37	D-701-5.2	12-inch RCP, Class IV, within Pavement Areas Underdrain Pipe, 6-Inch, Perforated	LF	190	\$300.00	\$57,000.00
38 39	D-705-5.1 D-705-5.2	Underdrain Pipe Cleanout	LF EA	11,300 27	\$45.00 \$500.00	<mark>\$508,500.00</mark> \$13,500.00
40	D-751-5.1	48" Stormdrain Manhole	EA	17	\$7,000.00	\$119,000.00
41	D-751-5.3	Adjust Catch Basin to Grade	EA	2	\$5,000.00	\$10,000.00
42	D-751-5.4	Connect to Existing Manhole/Basin	EA	10	\$2,500.00	\$25,000.00
43	P-153-6.1	Controlled Low-Strength Material (CLSM) for Existing Utility Protection	CY	50	\$30.00	\$1,500.00
44	L-108-5.1	No. 8 AWG 5 kV, L-824, Type C Cable, Installed in Duct Bank or Conduit No. 6 AWG Bare Counterpoise Wire, Installed Adjacent to / In the Duct Bank or	LF	12,000	\$2.50	\$30,000.00
45	L-108-5.2a	Conduit No. 1/0 AWG Bare Counterpoise Wire for MALSF, Installed Adjacent to / In the Duct	LF	10,600	\$2.00	\$21,200.00
46		Bank or Conduit No. 4/0 AWG 600V, L-824, Type THWN-2 Cable for MALSF, Installed in Duct Bank or	LF	1,200	\$5.25	\$6,300.00
47	L-108-5.3a	Conduit No. 4 AWG 600V, L-824, Type THWN-2 Cable for MALSF, Installed in Duct Bank or Conduit	LF	2,900	\$5.25	\$15,225.00
48 49	L-108-5.3b	No. 6 AWG 600V, L-824, Type THWN-2 Cable for MALSF, Installed in Duct Bank or Conduit	LF	2,900 3,200	\$3.00 \$2.50	\$8,700.00 \$8,000.00
45		No. 2 AWG 600V, L-824, Type THWN-2 Cable for MALSF, Installed in Duct Bank or		0,200		
50	L-108-5.3d	Conduit Concrete-Encased Electrical Duct Bank, 1W - 2" RGS Conduit	LF	400	\$3.50	\$1,400.00
51 52	L-110-5.4 L-110-5.5	Concrete-Encased Electrical Duct Bank, 1W - 2" RGS Conduit Non-encased Electrical Duct Bank, 1W - 2" Conduit	LF LF	210 170	\$50.00 \$25.00	\$10,500.00 \$4,250.00
52 53	L-110-5.8b	Non-encased Electrical Duct Bank, 1W - 2 Conduit	LF	380	\$25.00	\$4,250.00 \$17,100.00
54	L-110-5.8c	Non-encased Electrical Duct Bank, 1W - 3" and 3W - 2" Conduit	LF	140	\$45.00	\$6,300.00
55		Construct FAA Pull Box	EA	2	\$12,000.00	\$24,000.00
56	L-115-5.1c	Construct Junction Can: L-868 with Lid	EA	4	\$3,000.00	\$12,000.00
57		Adjust Junction Can to Grade	EA	1	\$1,500.00	\$1,500.00
<u>58</u>	L-115-5.3a	Construct MALSF Threshold Bar Construct MALSF Centerline Bar	EA	1	\$100,000.00 \$35,000.00	\$100,000.00 \$105,000,00
59 60	L-115-5.3b L-125-5.1a	Construct MALSF Centerline Bar Construct New L-858B(L) Distance Remaining Sign and Concrete Pad	EA EA	3	\$35,000.00 \$4,000.00	\$105,000.00 \$16,000.00
61	L-125-5.4a	Install New L-861(L) Elevated Runway Edge Light and Adjust Existing Base Can	EA	44	\$750.00	\$33,000.00
62	L-125-5.4b	Install New L-861(L) Elevated Runway Edge Light on Existing Base Can	EA	9	\$300.00	\$2,700.00
63	L-125-5.6a	Install New L-861E(L) Runway Threshold Light and Transformer and Adjust Existing Base Can	EA	18	\$750.00	\$13,500.00
64	L-125-5.6b	Install New L-861E(L) Runway Threshold Light and Transformer on Existing Base Can	EA	6	\$300.00	\$1,800.00
65		Install ID Tag	EA	77	\$75.00	\$5,775.00
66	L-125-5.13	Install Salvaged REILs on New Concrete Pad	SET	1	\$15,000.00	\$15,000.00
67	L-125-5.15a	Miscellaneous Lighting Equipment for Runway	LS	1	\$40,000.00	\$40,000.00
68		Marking, 2 Coats with Beads (All Colors)	SF	78,300	\$3.00	\$234,900.00
69		Marking, 2 Coats with No Beads (All Colors)	SF	2,000	\$2.50	\$5,000.00
70 71	P-620-5.2c	Marking, Single Coat with No Beads (All Colors) Seeding	SF	24,000	\$1.50 \$5.000.00	\$36,000.00 \$15,000.00
71 72	T-901-5.1 CVSS-DOA 9-4	Execution of Release on Contract	AC LS	3	\$5,000.00 \$1.00	\$15,000.00 \$1.00
12	0100 000 0-4			1	\$1.00 TOTAL	\$11,845,601.00
						+,,

Item						
	Spec No.	Description	Unit	Qty	Cost	Total
1	C-100-14.1	Contractor Quality Control Program (CQCP)	LS	1	\$7,000.00	\$7,000.00
2	C-105.1	Mobilization	LS	1	\$69,000.00	\$69,000.00
3	C-105.2	Resident Project Engineer's Field Office	LS	1	\$2,000.00	\$2,000.00
4	SP-102-3.1	Compliance with Pollution, Erosion, and Siltation Control	LS	1	\$7,000.00	\$7,000.00
5	SP-100-3.1	Airfield Safety and Traffic Control	LS	1	\$14,000.00	\$14,000.00
6	SP-100-3.2	Construction Staking and Survey Layout	LS	1	\$7,000.00	\$7,000.00
7	P-101-5.2	Asphalt Crack Repair (under 1.5" width)	LF	6,100	\$5.00	\$30,500.00
8	P-101-5.3	Asphalt Crack Repair (over 1.5" width)	SF	400	\$50.00	\$20,000.00
9	P-101-5.4	Remove Pavement Markings	SF	500	\$2.00	\$1,000.00
10	P-101-5.6	Cold Mill, Variable Depth (2 inches Maximum)	SY	8,200	\$5.00	\$41,000.00
11	SP-126-4.3	Remove Cable and Counterpoise	LF	7,100	\$1.00	\$7,100.00
12	SP-126-4.8	Demolish Airfield Sign and Pad	EA	8	\$1,200.00	\$9,600.00
		Remove and Salvage Elevated Taxiway Edge Light Fixture and Transformer. Protect				. ,
13	SP-126-4.9a	Can.	EA	31	\$200.00	\$6,200.00
		Remove and Salvage Elevated Runway Edge Light Fixture and Transformer. Protect				
14	SP-126-4.9b	Can. Berner and Only and Denner Education of Finder and Terra (second	EA	2	\$200.00	\$400.00
15	SP-126-4.10	Remove and Salvage In-pavement Runway Edge Light Fixture and Transformer. Protect Can.		3	¢220.00	¢660.00
15 16	P-152-4.10	Unclassified Excavation and Haul-off	EA CY		\$220.00 \$40.00	\$660.00 \$40,000.00
17	P-152-4.1 P-152-4.2	Embankment in Place	CY	1,000 300	\$40.00	\$3,600.00
18	P-152-4.3	Subgrade Preparation Crushed Aggregate Base Course, P-209	SY	3,100	\$3.00	\$9,300.00
19	P-209-5.1	Asphalt Concrete Surface Course, P-209	CY	1,200	\$75.00	\$90,000.00
20	P-401-8.1		TON	2,000	\$165.00	\$330,000.00
21	D-751-5.3	Adjust Catch Basin to Grade	EA	1	\$5,000.00	\$5,000.00
22	L-108-5.1	No. 8 AWG 5 kV, L-824, Type C Cable, Installed in Duct Bank or Conduit No. 6 AWG Bare Counterpoise Wire, Installed Adjacent to / In the Duct Bank or	LF	11,700	\$2.50	\$29,250.00
23	L-108-5.2a	Conduit	LF	3,500	\$2.00	\$7,000.00
24	L-110-5.5	Non-encased Electrical Duct Bank, 1W - 2" Conduit	LF	120	\$25.00	\$3,000.00
25	L-115-5.2a	Adjust Electrical Pullbox to Grade	EA	2	\$2,000.00	\$4,000.00
26	L-125-5.1d	Construct New L-858(L) Airfield Guidance Sign (A3) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
20	L-125-5.1g	Construct New L-858(L) Airfield Guidance Sign (K3) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
28	L-125-5.1h	Construct New L-858(L) Airfield Guidance Sign (B3) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
20	L-125-5.1k	Construct New L-858(L) Airfield Guidance Sign (64) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
29 30	L-125-5.1k	Construct New L-858(L) Airfield Guidance Sign (C3) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
30	L-125-5.10	Construct New L-858(L) Airfield Guidance Sign (C4) and Concrete Pad	EA	1		
31	L-125-5.10 L-125-5.1p		EA		\$6,000.00 \$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (D4) and Concrete Pad		1		\$6,000.00
33	L-125-5.4a	Install New L-861(L) Elevated Runway Edge Light and Adjust Existing Base Can	EA	2	\$750.00	\$1,500.00
34	L-125-5.5	Install New L-852D(L) In-Pavement Runway Edge Light and Adjust Existing Base Can	EA	3	\$900.00	\$2,700.00
35	L-125-5.11	Install Salvaged Elevated Taxiway Edge Light and Transformer on Existing Base Can	EA	32	\$500.00	\$16,000.00
36	L-125-5.12	Install ID Tag	EA	37	\$75.00	\$2,775.00
37	P-620-5.2a	Marking, 2 Coats with Beads (All Colors)	SF	3,200	\$3.00	\$9,600.00
37	P-620-5.2a	Marking, Single Coat with No Beads (All Colors)	SF	7,900	\$3.00	\$9,800.00 \$11,850.00
	P-620-5.2d	Marking, Single Coat with Ro Beads (All Colors)	SF		\$2.00	\$11,850.00
39 40	T-901-5.1	Seeding	AC	1,500	\$2.00	\$3,000.00
40	1-901-0.1		AU	1	\$5,000.00 TOTAL	\$5,000.00 \$838,035.00

Bid Alt 1 - Taxiway Connectors Pavement Reconstruction

This project will consist of a full reconstruction of the structural section, including strengthening of the subgrade. Bid Alt 1 consists of the connector taxiways A, B, C, D, and E. Based on the fleet mix, the pavement section is anticipated to be composed of 4 inches of P-401 asphalt surface course, 9 inches of P-209 crushed aggregate base course, and 16 inches of lime-treated subgrade. Grading will extend into the infields to accomplish positive drainage, however full infield RSA compliance is not included in this estimate. The estimated cost for Bid Alt 1 is as follows:

1 2 3 - 4 - 5 - 6 - 7 - 8 - 9 5 10 5 11 - 12 5 13 5 14 - 15 S 16 S 17 S 18 5 19 - 20 - 21 - 22 - 23 - 24 -	C-100-14.1 C-105.1 C-105.2 SP-102-3.1 SP-100-3.1 SP-100-3.2 SP-100-3.8 P-101-5.1 SP-126-4.2a SP-126-4.2a SP-126-4.2a SP-126-4.2a SP-126-4.2a SP-126-4.2a SP-126-4.4 SP-126-4.1a SP-126-4.1b SP-100-3.4 SP-100-3.4 SP-100-3.6 P-209-5.1 P-401-8.1b	DescriptionImage: Contractor Quality Control Program (CQCP)MobilizationResident Project Engineer's Field OfficeCompliance with Pollution, Erosion, and Siltation ControlAirfield Safety and Traffic ControlConstruction Staking and Survey LayoutUnderground Utility Investigation and PotholingDemolish Asphalt PavementDemolish Conduit, Cable, and CounterpoiseDemolish Conduit, Cable, and CounterpoiseDemolish Concrete Encased Conduit, Cable, and CounterpoiseDemolish Electrical PullboxDemolish FAA PullboxDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Abandoned Waterline, if EncounteredUnclassified Excavation and Haul-offEmbankment in PlaceSubgrade PreparationLime Treated Subgrade, 16-Inch DepthIn-place Drying TechniquesSubgrade Stabilization, Excavation Below SubgradeMulti-axial GeogridCrushed Aggregate Base Course, P-209	Unit LS EA EA EA EA EA EA EA EA SY SY SY SY SY SY SY	Qty 1 200 13 1 18 55 2 3 220 5,500 2,500 17,600 11,400 1,200	Cost \$27,000.00 \$265,000.00 \$7,000.00 \$7,000.00 \$27,000.00 \$53,000.00 \$53,000.00 \$53,000.00 \$53,000.00 \$53,000.00 \$55,000 \$55,000 \$55,000 \$1,000 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$4400.00 \$400.00 \$25.00 \$40.00 \$12.00 \$12.00 \$12.00 \$12.00 \$3.00 \$16.50	Total \$27,000.00 \$265,000.00 \$7,000.00 \$27,000.00 \$53,000.00 \$53,000.00 \$53,000.00 \$6,600.00 \$145,800.00 \$63,200.00 \$145,800.00 \$12,000.00 \$12,000.00 \$12,000.00 \$220,000 \$22,000.00 \$22,000.00 \$22,000.00 \$22,000.00 \$220,000.00 \$220,000.00 \$22,000.00 \$22,000.00 \$22,000.00 \$22,000.00 \$22,000.00 \$22,000.00 \$30,000.00 \$22,800.00 \$188,100.00
2 3 3 4 5 6 7 8 9 5 10 5 11 5 12 5 13 5 14 15 15 5 16 5 17 5 18 5 19 20 21 22 23 24 25 5 26 27 28 29 30 31	C-105.1 C-105.2 SP-102-3.1 SP-100-3.2 SP-100-3.8 P-101-5.1 SP-126-4.2a SP-126-4.3 SP-126-4.7a SP-126-4.7a SP-126-4.7a SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.1b SP-126-4.12b SP-126-4.17 P-152-4.1 P-152-4.1 P-152-4.3 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Mobilization Resident Project Engineer's Field Office Compliance with Pollution, Erosion, and Siltation Control Airfield Safety and Traffic Control Construction Staking and Survey Layout Underground Utility Investigation and Potholing Demolish Asphalt Pavement Demolish Conduit, Cable, and Counterpoise Demolish Concrete Encased Conduit, Cable, and Counterpoise Remove Cable and Counterpoise Demolish Electrical Pullbox Demolish FAA Pullbox Demolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture. Demolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture. Demolish Abandoned Waterline, if Encountered Unclassified Excavation and Haul-off Embankment in Place Subgrade Preparation Lime Treated Subgrade, 16-Inch Depth In-place Drying Techniques Subgrade Stabilization, Excavation Below Subgrade Multi-axial Geogrid	LS LS LS LS HOUR SY LF LF LF EA EA EA EA EA EA EA EA CY CY SY SY CY	1 1 1 1 12 16,200 7,900 400 200 13 1 18 55 2 3 220 5,500 2,500 17,600 1,200	\$265,000.00 \$7,000.00 \$27,000.00 \$53,000.00 \$53,000.00 \$53,000.00 \$53,000.00 \$550.00 \$550.00 \$550.00 \$50.00 \$50.00 \$1200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$4400.00 \$25.00 \$400.00 \$25.00 \$40.00 \$12.00 \$12.00 \$33.00 \$16.50	\$265,000.00 \$7,000.00 \$53,000.00 \$53,000.00 \$6,600.00 \$145,800.00 \$63,200.00 \$12,000.00 \$12,000.00 \$12,000.00 \$12,000.00 \$22,000.00 \$220,000.00 \$220,000.00 \$30,000.00 \$52,800.00
3 4 5 6 7 8 9 5 10 5 11 5 12 5 13 5 14 15 15 5 16 5 17 5 18 5 19 20 21 22 23 24 25 26 27 28 29 30 31 5	C-105.2 SP-102-3.1 SP-100-3.2 SP-100-3.8 P-101-5.1 SP-126-4.2a SP-126-4.2a SP-126-4.2a SP-126-4.7a SP-126-4.7a SP-126-4.7a SP-126-4.7b SP-126-4.7b SP-126-4.11a SP-126-4.11b SP-126-4.11b SP-126-4.17 P-152-4.1 P-152-4.1 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Resident Project Engineer's Field OfficeCompliance with Pollution, Erosion, and Siltation ControlAirfield Safety and Traffic ControlConstruction Staking and Survey LayoutUnderground Utility Investigation and PotholingDemolish Asphalt PavementDemolish Conduit, Cable, and CounterpoiseDemolish Concrete Encased Conduit, Cable, and CounterpoiseRemove Cable and CounterpoiseDemolish FAA PullboxDemolish Airfield Sign and PadDemolish Electrical PullboxDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Abandoned Waterline, if EncounteredUnclassified Excavation and Haul-offEmbankment in PlaceSubgrade PreparationLime Treated Subgrade, 16-Inch DepthIn-place Drying TechniquesSubgrade Stabilization, Excavation Below SubgradeMulti-axial Geogrid	LS LS LS HOUR SY LF LF EA EA EA EA EA EA EA EA EA SY CY SY CY	1 1 1 1 12 16,200 7,900 400 200 13 1 18 55 2 3 220 5,500 2,500 17,600 1,200	\$7,000.00 \$27,000.00 \$53,000.00 \$27,000.00 \$550.00 \$9.00 \$30.00 \$1,00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$4400.00 \$4400.00 \$4400.00 \$440.00 \$440.00 \$3,00 \$12.00 \$40.00	\$7,000.00 \$27,000.00 \$53,000.00 \$6,600.00 \$145,800.00 \$63,200.00 \$12,000.00 \$12,000.00 \$12,000.00 \$1,200.00 \$22,000.00 \$22,000.00 \$2,250.00 \$220,000.00 \$30,000.00 \$52,800.00
4 5 6 7 8 9 9 5 10 5 11 12 12 5 13 5 14 15 15 S 16 S 17 S 18 5 19 20 21 22 23 24 25 26 27 28 29 30 31 5	SP-102-3.1 SP-100-3.1 SP-100-3.2 SP-100-3.8 P-101-5.1 SP-126-4.2a SP-126-4.2b SP-126-4.3 SP-126-4.7a SP-126-4.7a SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.11a SP-126-4.12b SP-126-4.17b SP-105-4.1 SP-100-3.4 SP-100-3.4 SP-100-3.6 P-209-5.1 P-401-8.1	Compliance with Pollution, Erosion, and Siltation ControlAirfield Safety and Traffic ControlConstruction Staking and Survey LayoutUnderground Utility Investigation and PotholingDemolish Asphalt PavementDemolish Conduit, Cable, and CounterpoiseDemolish Concrete Encased Conduit, Cable, and CounterpoiseRemove Cable and CounterpoiseDemolish FAA PullboxDemolish Airfield Sign and PadDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Revated Runway Edge Light and Can. Salvage Existing Fixture.Demolish Pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Concrete Encave CounceredUnclassified Excavation and Haul-offEmbankment in PlaceSubgrade PreparationLime Treated Subgrade, 16-Inch DepthIn-place Drying TechniquesSubgrade Stabilization, Excavation Below SubgradeMulti-axial Geogrid	LS LS HOUR SY LF LF EA EA EA EA EA EA EA CY CY SY SY SY CY	1 1 12 16,200 7,900 400 200 13 1 18 555 2 3 220 5,500 2,500 17,600 1,200	\$27,000.00 \$53,000.00 \$27,000.00 \$550.00 \$9.00 \$8.00 \$30.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$4400.00 \$4400.00 \$750.00 \$25.00 \$440.00 \$3.00 \$12.00 \$3.00	\$27,000.00 \$53,000.00 \$6,600.00 \$145,800.00 \$63,200.00 \$12,000.00 \$12,000.00 \$15,600.00 \$22,000.00 \$22,000.00 \$22,250.00 \$22,000.00 \$220,000.00 \$30,000.00 \$52,800.00
5 6 7 8 9 5 10 5 11 12 12 5 13 5 14 15 15 5 16 5 17 5 18 5 19 20 21 22 23 24 25 26 27 28 29 30 31 5	SP-100-3.1 SP-100-3.2 SP-100-3.8 P-101-5.1 SP-126-4.2a SP-126-4.2b SP-126-4.3 SP-126-4.7a SP-126-4.7b SP-126-4.7a SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.11a SP-126-4.12b SP-126-4.12b SP-126-4.17 P-152-4.1 P-152-4.1 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Airfield Safety and Traffic ControlConstruction Staking and Survey LayoutUnderground Utility Investigation and PotholingDemolish Asphalt PavementDemolish Conduit, Cable, and CounterpoiseDemolish Concrete Encased Conduit, Cable, and CounterpoiseRemove Cable and CounterpoiseDemolish Electrical PullboxDemolish FAA PullboxDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish Elevated Runway Edge Light and Can. Salvage Existing Fixture.Demolish Abandoned Waterline, if EncounteredUnclassified Excavation and Haul-offEmbankment in PlaceSubgrade PreparationLime Treated Subgrade, 16-Inch DepthIn-place Drying TechniquesSubgrade Stabilization, Excavation Below SubgradeMulti-axial Geogrid	LS HOUR SY LF LF EA EA EA EA EA EA EA CY CY SY SY SY CY	1 12 16,200 7,900 400 200 13 1 18 55 2 3 220 5,500 2,500 17,600 1,200	\$53,000.00 \$27,000.00 \$550.00 \$9.00 \$8.00 \$30.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$4400.00 \$4400.00 \$440.00 \$440.00 \$440.00 \$12.00 \$12.00 \$12.00 \$12.00	\$53,000.00 \$27,000.00 \$6,600.00 \$145,800.00 \$63,200.00 \$12,000.00 \$12,000.00 \$1,200.00 \$21,600.00 \$22,000.00 \$22,000.00 \$220,000.00 \$30,000.00 \$52,800.00
6 7 8 9 9 5 10 5 11 12 12 5 13 5 14 15 15 5 16 5 17 5 18 5 19 20 21 22 23 24 25 26 27 28 29 30 31 5	SP-100-3.2 SP-100-3.8 P-101-5.1 SP-126-4.2a SP-126-4.3 SP-126-4.7a SP-126-4.7a SP-126-4.7a SP-126-4.7a SP-126-4.7a SP-126-4.7b SP-126-4.7b SP-126-4.11a SP-126-4.11b SP-126-4.12b SP-126-4.12b SP-126-4.17a P-152-4.1 P-152-4.1 P-152-4.3 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Construction Staking and Survey LayoutUnderground Utility Investigation and PotholingDemolish Asphalt PavementDemolish Conduit, Cable, and CounterpoiseDemolish Concrete Encased Conduit, Cable, and CounterpoiseRemove Cable and CounterpoiseDemolish Electrical PullboxDemolish FAA PullboxDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish Elevated Runway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Abandoned Waterline, if EncounteredUnclassified Excavation and Haul-offEmbankment in PlaceSubgrade PreparationLime Treated Subgrade, 16-Inch DepthIn-place Drying TechniquesSubgrade Stabilization, Excavation Below SubgradeMulti-axial Geogrid	LS HOUR SY LF LF EA EA EA EA EA EA EA CY CY SY SY CY	1 12 16,200 7,900 400 200 13 1 18 55 2 3 220 5,500 2,500 17,600 1,200	\$27,000.00 \$550.00 \$9.00 \$8.00 \$30.00 \$1,200.00 \$1,200.00 \$1,200.00 \$400.00 \$400.00 \$400.00 \$440.00 \$412.00 \$3.00 \$12.00 \$3.00	\$27,000.00 \$6,600.00 \$145,800.00 \$63,200.00 \$12,000.00 \$12,000.00 \$11,200.00 \$21,600.00 \$22,000.00 \$22,000.00 \$5,500.00 \$30,000.00 \$52,800.00
7 8 9 5 10 5 11 12 12 5 13 5 14 15 15 5 16 5 17 5 18 5 19 20 21 22 23 24 25 26 27 28 29 30 31 5	SP-100-3.8 P-101-5.1 SP-126-4.2a SP-126-4.3 SP-126-4.3 SP-126-4.7a SP-126-4.7a SP-126-4.7a SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.11a SP-126-4.12b SP-126-4.12b SP-126-4.12b SP-126-4.17 P-152-4.1 P-152-4.2 P-152-4.3 P-152-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Underground Utility Investigation and PotholingDemolish Asphalt PavementDemolish Conduit, Cable, and CounterpoiseDemolish Concrete Encased Conduit, Cable, and CounterpoiseRemove Cable and CounterpoiseDemolish Electrical PullboxDemolish FAA PullboxDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Abandoned Waterline, if EncounteredUnclassified Excavation and Haul-offEmbankment in PlaceSubgrade PreparationLime Treated Subgrade, 16-Inch DepthIn-place Drying TechniquesSubgrade Stabilization, Excavation Below SubgradeMulti-axial Geogrid	HOUR SY LF LF EA EA EA EA EA EA CY CY SY SY CY	12 16,200 7,900 400 200 13 1 18 55 2 3 220 5,500 2,500 17,600 11,400 1,200	\$550.00 \$9.00 \$8.00 \$1.00 \$1,200.00 \$1,200.00 \$1,200.00 \$4400.00 \$4400.00 \$4400.00 \$440.00 \$25.00 \$40.00 \$12.00 \$3.00 \$16.50	\$6,600.00 \$145,800.00 \$63,200.00 \$12,000.00 \$15,600.00 \$11,200.00 \$21,600.00 \$22,000.00 \$22,000.00 \$5,500.00 \$30,000.00 \$52,800.00
8 9 5 10 5 11 12 5 13 5 14 15 S 16 S 17 S 18 5 18 5 17 S 19 20 21 22 23 24 25 26 27 28 29 300 31 31 5 5	P-101-5.1 SP-126-4.2a SP-126-4.2b SP-126-4.3 SP-126-4.7a SP-126-4.7b SP-126-4.7b SP-126-4.11a SP-126-4.11b SP-126-4.12b SP-105-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Demolish Asphalt PavementDemolish Conduit, Cable, and CounterpoiseDemolish Concrete Encased Conduit, Cable, and CounterpoiseRemove Cable and CounterpoiseDemolish Electrical PullboxDemolish FAA PullboxDemolish Airfield Sign and PadDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish Elevated Runway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Abandoned Waterline, if EncounteredUnclassified Excavation and Haul-offEmbankment in PlaceSubgrade PreparationLime Treated Subgrade, 16-Inch DepthIn-place Drying TechniquesSubgrade Stabilization, Excavation Below SubgradeMulti-axial Geogrid	SY LF LF EA EA EA EA EA EA CY CY SY SY CY	16,200 7,900 400 200 13 1 18 55 2 3 220 5,500 2,500 17,600 1,400 1,200	\$9.00 \$8.00 \$30.00 \$1.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$1,200.00 \$400.00 \$750.00 \$440.00 \$25.00 \$40.00 \$12.00 \$3.00 \$16.50	\$145,800.00 \$63,200.00 \$200.00 \$15,600.00 \$1,200.00 \$1,200.00 \$21,600.00 \$22,000.00 \$2,250.00 \$5,500.00 \$220,000.00 \$30,000.00 \$52,800.00
9 5 10 5 11 12 12 5 13 5 14 15 15 S 16 S 17 S 18 5 19 20 21 22 23 24 25 26 27 28 29 30 31 31	SP-126-4.2a SP-126-4.3 SP-126-4.7a SP-126-4.7b SP-126-4.7b SP-126-4.11a SP-126-4.12b SP-126-4.12b SP-126-4.12b SP-126-4.12b SP-126-4.12b SP-126-4.12b SP-126-4.12b SP-126-4.17 P-152-4.1 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Demolish Conduit, Cable, and CounterpoiseDemolish Concrete Encased Conduit, Cable, and CounterpoiseRemove Cable and CounterpoiseDemolish Electrical PullboxDemolish FAA PullboxDemolish Airfield Sign and PadDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish Elevated Runway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Abandoned Waterline, if EncounteredUnclassified Excavation and Haul-offEmbankment in PlaceSubgrade PreparationLime Treated Subgrade, 16-Inch DepthIn-place Drying TechniquesSubgrade Stabilization, Excavation Below SubgradeMulti-axial Geogrid	LF LF EA EA EA EA EA EA EA CY CY SY SY SY CY	7,900 400 200 13 1 18 55 2 3 220 5,500 2,500 17,600 1,400 1,200	\$8.00 \$30.00 \$1.00 \$1,200.00 \$1,200.00 \$1,200.00 \$4400.00 \$4400.00 \$25.00 \$440.00 \$25.00 \$40.00 \$3.00 \$12.00 \$3.00	\$63,200.00 \$12,000.00 \$15,600.00 \$1,200.00 \$21,600.00 \$22,000.00 \$22,000.00 \$5,500.00 \$30,000.00 \$52,800.00
10 \$ 11 12 \$ 13 \$ \$ 13 \$ \$ 13 \$ \$ 14 \$ \$ 15 \$ \$ 16 \$ \$ 17 \$ \$ 18 \$ \$ 19 \$ \$ 20 \$ \$ 21 \$ \$ 22 \$ \$ 23 \$ \$ 24 \$ \$ 26 \$ \$ 27 \$ \$ 28 \$ \$ 30 \$ \$ 31 \$ \$	SP-126-4.2b SP-126-4.3 SP-126-4.7a SP-126-4.7b SP-126-4.8 SP-126-4.11a SP-126-4.11b SP-126-4.12b SP-126-4.12b SP-126-4.12b SP-126-4.17 P-152-4.1 P-152-4.2 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.6 P-209-5.1 P-401-8.1	Demolish Concrete Encased Conduit, Cable, and CounterpoiseRemove Cable and CounterpoiseDemolish Electrical PullboxDemolish FAA PullboxDemolish FAA PullboxDemolish Airfield Sign and PadDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish Elevated Runway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Abandoned Waterline, if EncounteredUnclassified Excavation and Haul-offEmbankment in PlaceSubgrade PreparationLime Treated Subgrade, 16-Inch DepthIn-place Drying TechniquesSubgrade Stabilization, Excavation Below SubgradeMulti-axial Geogrid	LF LF EA EA EA EA EA EA CY CY SY SY SY CY	400 200 13 1 18 55 2 3 220 5,500 2,500 17,600 11,400 1,200	\$30.00 \$1.00 \$1,200.00 \$1,200.00 \$400.00 \$400.00 \$750.00 \$25.00 \$40.00 \$12.00 \$3.00 \$16.50	\$12,000.00 \$200.00 \$15,600.00 \$1,200.00 \$21,600.00 \$22,000.00 \$2,250.00 \$5,500.00 \$220,000.00 \$30,000.00 \$52,800.00
11 12 5 13 5 5 14 15 S 15 S 16 S 17 S 18 5 18 5 5 5 20 21 22 23 23 24 25 5 26 27 28 29 30 31 5	SP-126-4.3 SP-126-4.7a SP-126-4.7b SP-126-4.7b SP-126-4.7b SP-126-4.11a SP-126-4.12b SP-126-4.17 P-152-4.1 P-152-4.2 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Demolish Electrical PullboxImage: Constraint of the systemDemolish FAA PullboxImage: Constraint of the systemDemolish Airfield Sign and PadImage: Constraint of the systemDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Image: Constraint of the systemDemolish Elevated Runway Edge Light and Can. Salvage Existing Fixture.Image: Constraint of the systemDemolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Image: Constraint of the systemDemolish Abandoned Waterline, if EncounteredImage: Constraint of the systemUnclassified Excavation and Haul-offImage: Constraint of the systemSubgrade PreparationImage: Constraint of the systemLime Treated Subgrade, 16-Inch DepthImage: Constraint of the systemSubgrade Stabilization, Excavation Below SubgradeImage: Constraint of the systemMulti-axial GeogridImage: Constraint of the system	LF EA EA EA EA EA EA EA CY CY SY SY SY CY	200 13 1 18 55 2 3 220 5,500 2,500 17,600 11,400 1,200	\$1.00 \$1,200.00 \$1,200.00 \$1,200.00 \$400.00 \$400.00 \$25.00 \$40.00 \$40.00 \$12.00 \$3.00 \$16.50	\$200.00 \$15,600.00 \$1,200.00 \$21,600.00 \$22,000.00 \$2,250.00 \$2,20,000.00 \$2,20,000.00 \$2,20,000.00
13 5 14 15 15 S 16 S 17 S 18 S 19 20 21 22 23 24 25 26 27 28 29 30 31 5	SP-126-4.7b SP-126-4.8 SP-126-4.11a SP-126-4.11b SP-126-4.12b SP-126-4.17 P-152-4.1 P-152-4.2 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Demolish FAA PullboxImage: Constraint of the systemDemolish Airfield Sign and PadImage: Constraint of the systemDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Image: Constraint of the systemDemolish Elevated Runway Edge Light and Can. Salvage Existing Fixture.Image: Constraint of the systemDemolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Image: Constraint of the systemDemolish Abandoned Waterline, if EncounteredImage: Constraint of the systemUnclassified Excavation and Haul-offImage: Constraint of the systemEmbankment in PlaceImage: Constraint of the systemSubgrade PreparationImage: Constraint of the systemLime Treated Subgrade, 16-Inch DepthImage: Constraint of the systemSubgrade Stabilization, Excavation Below SubgradeImage: Constraint of the systemMulti-axial GeogridImage: Constraint of the system	EA EA EA EA EA EA CY CY SY SY SY CY	1 18 55 2 3 220 5,500 2,500 17,600 11,400 1,200	\$1,200.00 \$1,200.00 \$400.00 \$400.00 \$750.00 \$25.00 \$40.00 \$12.00 \$3.00 \$16.50	\$1,200.00 \$21,600.00 \$22,000.00 \$2,250.00 \$5,500.00 \$220,000.00 \$30,000.00 \$52,800.00
14 15 16 S 17 S 18 19 20 21 22 23 24 25 26 27 28 29 30 31	SP-126-4.8 SP-126-4.11a SP-126-4.11b SP-126-4.12b SP-126-4.17 P-152-4.1 P-152-4.2 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Demolish Airfield Sign and PadImage: Constraint of the systemDemolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Image: Constraint of the systemDemolish Elevated Runway Edge Light and Can. Salvage Existing Fixture.Image: Constraint of the systemDemolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Image: Constraint of the systemDemolish Abandoned Waterline, if EncounteredImage: Constraint of the systemUnclassified Excavation and Haul-offImage: Constraint of the systemEmbankment in PlaceImage: Constraint of the systemSubgrade PreparationImage: Constraint of the systemLime Treated Subgrade, 16-Inch DepthImage: Constraint of the systemIn-place Drying TechniquesImage: Constraint of the systemSubgrade Stabilization, Excavation Below SubgradeImage: Constraint of the systemMulti-axial GeogridImage: Constraint of the system	EA EA EA EA CY CY SY SY SY CY	18 55 2 3 220 5,500 2,500 17,600 11,400 1,200	\$1,200.00 \$400.00 \$750.00 \$25.00 \$40.00 \$12.00 \$3.00 \$16.50	\$21,600.00 \$22,000.00 \$800.00 \$2,250.00 \$5,500.00 \$220,000.00 \$30,000.00 \$52,800.00
15 S 16 S 17 S 18 S 19 20 21 22 23 24 25 26 27 28 29 30 31 5	SP-126-4.11a SP-126-4.11b SP-126-4.12b SP-126-4.17 P-152-4.1 P-152-4.2 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Demolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.Demolish Elevated Runway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Abandoned Waterline, if EncounteredUnclassified Excavation and Haul-offEmbankment in PlaceSubgrade PreparationLime Treated Subgrade, 16-Inch DepthIn-place Drying TechniquesSubgrade Stabilization, Excavation Below SubgradeMulti-axial Geogrid	EA EA EA CY CY SY SY SY CY	55 2 3 220 5,500 2,500 17,600 11,400 1,200	\$400.00 \$400.00 \$750.00 \$25.00 \$40.00 \$12.00 \$3.00 \$16.50	\$22,000.00 \$800.00 \$2,250.00 \$5,500.00 \$220,000.00 \$30,000.00 \$52,800.00
16 S 17 S 18 S 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 -	SP-126-4.11b SP-126-4.12b SP-126-4.17 P-152-4.1 P-152-4.2 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Demolish Elevated Runway Edge Light and Can. Salvage Existing Fixture.Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture.Demolish Abandoned Waterline, if EncounteredUnclassified Excavation and Haul-offEmbankment in PlaceSubgrade PreparationLime Treated Subgrade, 16-Inch DepthIn-place Drying TechniquesSubgrade Stabilization, Excavation Below SubgradeMulti-axial Geogrid	EA EA LF CY CY SY SY SY CY	2 3 220 5,500 2,500 17,600 11,400 1,200	\$400.00 \$750.00 \$25.00 \$40.00 \$12.00 \$3.00 \$16.50	\$800.00 \$2,250.00 \$5,500.00 \$220,000.00 \$30,000.00 \$52,800.00
17 S 18 S 19 20 21 22 23 24 25 26 27 28 29 30 31 31	SP-126-4.12b SP-126-4.17 P-152-4.1 P-152-4.2 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Demolish In-pavement Runway Edge Light and Can. Salvage Existing Fixture. Demolish Abandoned Waterline, if Encountered Unclassified Excavation and Haul-off Embankment in Place Subgrade Preparation Lime Treated Subgrade, 16-Inch Depth In-place Drying Techniques Subgrade Stabilization, Excavation Below Subgrade Multi-axial Geogrid	EA LF CY CY SY SY SY CY	3 220 5,500 2,500 17,600 11,400 1,200	\$750.00 \$25.00 \$40.00 \$12.00 \$3.00 \$16.50	\$2,250.00 \$5,500.00 \$220,000.00 \$30,000.00 \$52,800.00
18 5 19 20 21 22 23 24 25 26 27 28 29 30 31 31	SP-126-4.17 P-152-4.1 P-152-4.2 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Demolish Abandoned Waterline, if Encountered Inclassified Excavation and Haul-off Unclassified Excavation and Haul-off Image: Comparison of the second s	LF CY CY SY SY SY CY	220 5,500 2,500 17,600 11,400 1,200	\$25.00 \$40.00 \$12.00 \$3.00 \$16.50	\$5,500.00 \$220,000.00 \$30,000.00 \$52,800.00
19 20 21 22 23 24 25 26 27 28 29 30 31	P-152-4.1 P-152-4.2 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Unclassified Excavation and Haul-off Image: Constraint of Place Embankment in Place Image: Constraint of Place Subgrade Preparation Image: Constraint of Place Lime Treated Subgrade, 16-Inch Depth Image: Constraint of Place In-place Drying Techniques Image: Constraint of Place Subgrade Stabilization, Excavation Below Subgrade Image: Constraint of Place Multi-axial Geogrid Image: Constraint of Place	CY CY SY SY SY CY	5,500 2,500 17,600 11,400 1,200	\$40.00 \$12.00 \$3.00 \$16.50	\$220,000.00 \$30,000.00 \$52,800.00
20 21 22 23 24 25 26 27 28 29 30 31	P-152-4.2 P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Embankment in PlaceImage: Subgrade PreparationSubgrade PreparationImage: Subgrade, 16-Inch DepthLime Treated Subgrade, 16-Inch DepthImage: Subgrade Stabilization, Excavation Below SubgradeSubgrade Stabilization, Excavation Below SubgradeImage: Subgrade Stabilization, Excavation Below SubgradeMulti-axial GeogridImage: Subgrade Stabilization Stabilization	CY SY SY SY CY	2,500 17,600 11,400 1,200	\$12.00 \$3.00 \$16.50	\$30,000.00 \$52,800.00
21 22 23 24 25 26 27 28 29 30 31	P-152-4.3 P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Subgrade PreparationImage: Constraint of the second state of	SY SY SY CY	17,600 11,400 1,200	\$3.00 \$16.50	\$52,800.00
22 23 24 25 26 27 28 29 30 31	P-155-8.1 SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Lime Treated Subgrade, 16-Inch Depth In-place Drying Techniques In-place Drying Techniques In-place Stabilization, Excavation Below Subgrade Multi-axial Geogrid Intervention	SY SY CY	11,400 1,200	\$16.50	
23 24 25 26 27 28 29 30 31	SP-100-3.4 SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	In-place Drying Techniques In-place Drying Techniques Subgrade Stabilization, Excavation Below Subgrade In-place Drying Techniques Multi-axial Geogrid In-place Drying Techniques	SY CY	1,200		φ100,100.00
24 25 26 27 28 29 30 31	SP-100-3.5 SP-100-3.6 P-209-5.1 P-401-8.1	Subgrade Stabilization, Excavation Below Subgrade Image: Contract of the stabilization of the stabilizatio of the stabilization of the stabilization of the st	CY		\$1.50	\$1,800.00
25 26 27 28 29 30 31 2	SP-100-3.6 P-209-5.1 P-401-8.1	Multi-axial Geogrid		500	\$70.00	\$21,000.00
27 28 29 30 31	P-401-8.1	Crushed Aggregate Base Course, P-209	SY	400	\$6.00	\$2,400.00
28 29 30 31	P-401-8.1		CY	5,400	\$75.00	\$405,000.00
29 30 31	P-621-5.1	Asphalt Concrete Surface Course, P-401	TON	2,600	\$165.00	\$429,000.00
30 31		Grooving	SY	2,500	\$7.00	\$17,500.00
31		12-inch RCP, Class IV, outside Pavement Areas	LF	120	\$250.00	\$30,000.00
		Underdrain Pipe, 6-Inch, Perforated	LF	3,100	\$45.00	\$139,500.00
32	D-705-5.2	Underdrain Pipe Cleanout	EA	32	\$500.00	\$16,000.00
		48" Stormdrain Manhole Catch Basin/Drop Inlet	EA	3	\$7,000.00	\$21,000.00
33 34		Connect to Existing Manhole/Basin	EA EA	1	\$10,000.00 \$2,500.00	\$10,000.00 \$5,000.00
35		Controlled Low-Strength Material (CLSM) for Existing Utility Protection	CY	120	\$30.00	\$3,600.00
36		No. 8 AWG 5 kV, L-824, Type C Cable, Installed in Duct Bank or Conduit	LF	12,800	\$30.00	\$32,000.00
		No. 6 AWG Bare Counterpoise Wire, Installed Adjacent to / In the Duct Bank or		12,000	φ2.00	<u> </u>
37		Conduit	LF	4,700	\$2.00	\$9,400.00
38	L-110-5.1	Concrete Encased Electrical Duct Bank, 1W - 2" Conduit	LF	550	\$50.00	\$27,500.00
39	L-110-5.2	Concrete Encased Electrical Duct Bank, 3W - 2" Conduit	LF	490	\$65.00	\$31,850.00
40		Non-encased Electrical Duct Bank, 1W - 2" Conduit	LF	1,200	\$25.00	\$30,000.00
41		Non-encased Electrical Duct Bank, 2W - 2" Conduit	LF	2,700	\$38.00	\$102,600.00
42		Concrete Encase Existing FAA Line Under Proposed Pavement	LF	250	\$40.00	\$10,000.00
		Concrete Encase Existing FAA Line Outside Pavement	LF	40	\$40.00	\$1,600.00
		Construct Electrical Pullbox: Aircraft Rated Construct FAA Pull Box	EA EA	10	\$10,000.00	\$100,000.00 \$12,000.00
		Construct Junction Can: L-868 with Lid	EA	1	\$12,000.00 \$3,000.00	\$12,000.00
		Construct Sufficient Can. L-666 with Lid	EA	1	\$6,000.00	\$9,000.00
		Construct New L-858(L) Airfield Guidance Sign (A2) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (A3) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (B1) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (B2) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (B3) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (B4) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (C1) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (C2) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (C3) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (C4) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (D1) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (D2) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (D3) and Concrete Pad Construct New L-858(L) Airfield Guidance Sign (D4) and Concrete Pad	EA EA	1 1	\$6,000.00 \$6,000.00	\$6,000.00 \$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (D4) and Concrete Pad	EA	1	\$6,000.00 \$6,000.00	\$6,000.00 \$6,000.00
		Construct New L-858(L) Airfield Guidance Sign (E1) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
	L-125-5.1s	Construct New L-858(L) Airfield Guidance Sign (E2) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
65		Construct New L-861(L) Elevated Runway Edge Light and Base Can	EA	2	\$2,500.00	\$5,000.00
66		Construct New L-852D(L) In-Pavement Runway Edge Light and Base Can	EA	3	\$2,500.00	\$7,500.00
67	L-125-5.9	Construct New L-861T(L) Medium Intensity Elevated Taxiway Edge Light and Base Can	EA	58	\$2,300.00	\$133,400.00
68		Install ID Tag	EA	63	\$75.00	\$4,725.00
69		Change Sign Legend	EA	18	\$800.00	\$14,400.00
70 I		Miscellaneous Lighting Equipment for Taxiways	LS	1	\$60,000.00	\$60,000.00
71		Marking, 2 Coats with Beads (All Colors)	SF	5,400	\$3.00	\$16,200.00
		Marking, Single Coat with No Beads (All Colors)	SF	9,100	\$1.50	\$13,650.00
72 73	T-901-5.1	Seeding	AC	5	\$5,000.00	\$25,000.00

		SCHEDULE D: BID ALT 1 TRANSITION WO	RK			
Item	Spec No.	Description	Unit	Qty	Cost	Total
1	C-100-14.1	Contractor Quality Control Program (CQCP)	LS	1	\$10,000.00	\$10,000.00
2	C-105.1	Mobilization	LS	1	\$97,000.00	\$97,000.00
3	C-105.2	Resident Project Engineer's Field Office	LS	1	\$3,000.00	\$3,000.00
4	SP-102-3.1	Compliance with Pollution, Erosion, and Siltation Control	LS	1	\$10,000.00	\$10,000.00
5	SP-100-3.1	Airfield Safety and Traffic Control	LS	1	\$20,000.00	\$20,000.00
6	SP-100-3.2	Construction Staking and Survey Layout	LS	1	\$10,000.00	\$10,000.00
7	P-101-5.1	Demolish Asphalt Pavement	SY	4,300	\$9.00	\$38,700.00
8	P-101-5.2	Asphalt Crack Repair (under 1.5" width)	LF	1,200	\$5.00	\$6,000.00
9	P-101-5.3	Asphalt Crack Repair (over 1.5" width)	SF	100	\$50.00	\$5,000.00
10	P-101-5.4	Remove Pavement Markings	SF	2,400	\$2.00	\$4,800.00
11	P-101-5.6	Cold Mill, Variable Depth (2 inches Maximum)	SY	1,600	\$5.00	\$8,000.00
12	SP-126-4.2a	Demolish Conduit, Cable, and Counterpoise	LF	1,200	\$8.00	\$9,600.00
13	SP-126-4.2b	Demolish Concrete Encased Conduit, Cable, and Counterpoise	LF	500	\$30.00	\$15,000.00
14	SP-126-4.3	Remove Cable and Counterpoise	LF	1,100	\$1.00	\$1,100.00
15	SP-126-4.4	Remove and Salvage Unlit Information Sign	EA	1	\$300.00	\$300.00
16	SP-126-4.5	Remove and Salvage Unlit Information Sign. Demolish Concrete Pad	EA	1	\$1,000.00	\$1,000.00
17	SP-126-4.7a	Demolish Electrical Pullbox	EA	1	\$1,200.00	\$1,200.00
18	SP-126-4.8	Demolish Airfield Sign and Pad	EA	3	\$1,200.00	\$3,600.00
19	SP-126-4.11a	Demolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.	EA	16	\$400.00	\$6,400.00
20	SP-126-4.12a	Demolish In-pavement Taxiway Edge Light and Can. Salvage Existing Fixture.	EA	6	\$750.00	\$4,500.00
21	SP-126-4.17	Demolish Abandoned Waterline, if Encountered	LF	40	\$25.00	\$1,000.00
22	P-152-4.1	Unclassified Excavation and Haul-off	CY	1,800	\$40.00	\$72,000.00
23	P-152-4.2	Embankment in Place	CY	500	\$12.00	\$6,000.00
24	P-152-4.3	Subgrade Preparation	SY	6,500	\$3.00	\$19,500.00
25	P-155-8.1	Lime Treated Subgrade, 16-Inch Depth	SY	4,400	\$16.50	\$72,600.00
26	SP-100-3.4	In-place Drying Techniques	SY	500	\$1.50	\$750.00
27	SP-100-3.5	Subgrade Stabilization, Excavation Below Subgrade	CY	100	\$70.00	\$7,000.00
28	SP-100-3.6	Multi-axial Geogrid	SY	200	\$6.00	\$1,200.00
29	P-209-5.1	Crushed Aggregate Base Course, P-209	CY	2,000	\$75.00	\$150,000.00
30	P-401-8.1	Asphalt Concrete Surface Course, P-401	TON	1,300	\$165.00	\$214,500.00
31	P-621-5.1	Grooving	SY	200	\$7.00	\$1,400.00
32	D-701-5.1	12-inch RCP, Class IV, outside Pavement Areas	LF	60	\$250.00	\$15,000.00
33	D-705-5.1	Underdrain Pipe, 6-Inch, Perforated	LF	1,000	\$45.00	\$45,000.00
34	D-705-5.2	Underdrain Pipe Cleanout	EA	12	\$500.00	\$6,000.00
35	D-751-5.4	Connect to Existing Manhole/Basin	EA	1	\$2,500.00	\$2,500.00
36	P-153-6.1	Controlled Low-Strength Material (CLSM) for Existing Utility Protection	CY	100	\$30.00	\$3,000.00
37	L-108-5.1	No. 8 AWG 5 kV, L-824, Type C Cable, Installed in Duct Bank or Conduit	LF	5,100	\$2.50	\$12,750.00
		No. 6 AWG Bare Counterpoise Wire, Installed Adjacent to / In the Duct Bank or				
38	L-108-5.2a	Conduit	LF	2,300	\$2.00	\$4,600.00
39	L-110-5.1	Concrete Encased Electrical Duct Bank, 1W - 2" Conduit	LF	560	\$50.00	\$28,000.00
40	L-110-5.5	Non-encased Electrical Duct Bank, 1W - 2" Conduit	LF	1,140	\$25.00	\$28,500.00
41	L-110-5.6	Non-encased Electrical Duct Bank, 2W - 2" Conduit	LF	30	\$38.00	\$1,140.00
42	L-110-5.7	Non-encased Electrical Duct Bank, 3W - 2" Conduit	LF	200	\$45.00	\$9,000.00
43	L-110-5.9	Concrete Encase Existing FAA Line Under Proposed Pavement	LF	110	\$40.00	\$4,400.00
44	L-115-5.1a	Construct Electrical Pullbox: Aircraft Rated	EA	1	\$10,000.00	\$10,000.00
45	L-115-5.1c	Construct Junction Can: L-868 with Lid	EA	2	\$3,000.00	\$6,000.00
46	L-125-5.1u	Construct New L-858(L) Airfield Guidance Sign (F2) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
47	L-125-5.1x	Construct New L-858(L) Airfield Guidance Sign (F5) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
48	L-125-5.1z	Construct New L-858(L) Airfield Guidance Sign (F7) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
49	L-125-5.2	Install Salvaged Unlit Informational Sign on Existing Concrete Pad	EA	1	\$1,000.00	\$1,000.00
50	L-125-5.3	Install Salvaged Unlit Informational Sign on New Concrete Pad	EA	1	\$3,000.00	\$3,000.00
51	L-125-5.9	Construct New L-861T(L) Medium Intensity Elevated Taxiway Edge Light and Base Can	EA	21	\$2,300.00	\$48,300.00
50		Construct New L-852T(L) Medium Intensity In-Pavement Taxiway Edge Light and Base	F A	10	¢0 500 00	¢20 F00 00
52	L-125-5.10		EA	13	\$2,500.00	\$32,500.00
53	L-125-5.12	Install ID Tag	EA	34	\$75.00	\$2,550.00
54	L-125-5.14	Change Sign Legend	EA	8	\$800.00	\$6,400.00
55	P-620-5.2a	Marking, 2 Coats with Beads (All Colors)	SF	5,100	\$3.00	\$15,300.00
56	P-620-5.2c	Marking, Single Coat with No Beads (All Colors)	SF	5,500	\$1.50	\$8,250.00
57	T-901-5.1	Seeding	AC	1	\$5,000.00	\$5,000.00
					TOTAL	\$1,117,340.00

Bid Alt 2 - Parallel Taxiway F Pavement Reconstruction

This project will consist of a full reconstruction of the structural section, including strengthening of the subgrade. Bid Alt 2 consists of the parallel taxiway F. Based on the fleet mix, the pavement section is anticipated to be composed of 4 inches of P-401 asphalt surface course, 9 inches of P-209 crushed aggregate base course, and 16 inches of lime-treated subgrade. Grading will extend into the infields to accomplish positive drainage, however full infield RSA compliance is not included in this estimate. The estimated cost for Bid Alt 2 is as follows:

		SCHEDULE E: BID ALT 2 WORK				
ltem	Spec No.	Description	Unit	Qty	Cost	Total
1	C-100-14.1	Contractor Quality Control Program (CQCP)	LS	1	\$100,000.00	\$100,000.00
2	C-105.1	Mobilization	LS	1	\$998,000.00	\$998,000.00
3	C-105.2	Resident Project Engineer's Field Office	LS	1	\$25,000.00	\$25,000.00
4	SP-102-3.1	Compliance with Pollution, Erosion, and Siltation Control	LS	1	\$100,000.00	\$100,000.00
5 6	SP-100-3.1	Airfield Safety and Traffic Control Construction Staking and Survey Layout	LS LS	1	\$200,000.00	\$200,000.00
0 7	SP-100-3.2 SP-100-3.8	Underground Utility Investigation and Potholing	HOUR	24	\$100,000.00 \$550.00	\$100,000.00 \$13,200.00
8	P-101-5.1	Demolish Asphalt Pavement	SY	90,700	\$350.00	\$13,200.00
9	P-101-5.2	Asphalt Crack Repair (under 1.5" width)	LF	2,100	\$5.00	\$10,500.00
10	P-101-5.3	Asphalt Crack Repair (over 1.5" width)	SF	200	\$50.00	\$10,000.00
11	P-101-5.4	Remove Pavement Markings	SF	14,800	\$2.00	\$29,600.00
12	P-101-5.6	Cold Mill, Variable Depth (2 inches Maximum)	SY	2,800	\$5.00	\$14,000.00
13	SP-126-4.2a	Demolish Conduit, Cable, and Counterpoise	LF	6,400	\$8.00	\$51,200.00
14	SP-126-4.2b	Demolish Concrete Encased Conduit, Cable, and Counterpoise	LF	6,500	\$30.00	\$195,000.00
15	SP-126-4.3	Remove Cable and Counterpoise	LF	400	\$1.00	\$400.00
16	SP-126-4.4	Remove and Salvage Unlit Information Sign	EA	1	\$300.00	\$300.00
17	SP-126-4.5	Remove and Salvage Unlit Information Sign. Demolish Concrete Pad	EA	1	\$1,000.00	\$1,000.00
18	SP-126-4.7a	Demolish Electrical Pullbox	EA	12	\$1,200.00	\$14,400.00
19	SP-126-4.7b	Demolish FAA Pullbox	EA	5	\$1,200.00	\$6,000.00
20	SP-126-4.8	Demolish Airfield Sign and Pad	EA	9	\$1,200.00	\$10,800.00
21	SP-126-4.11a	Demolish Elevated Taxiway Edge Light and Can. Salvage Existing Fixture.	EA	65	\$400.00	\$26,000.00
22	SP-126-4.12a	Demolish In-pavement Taxiway Edge Light and Can. Salvage Existing Fixture.	EA	64	\$750.00	\$48,000.00
23	SP-126-4.17	Demolish Abandoned Waterline, if Encountered	LF	400	\$25.00	\$10,000.00
24 25	SP-126-4.16 P-152-4.1	Demolish Concrete Valley Gutter Unclassified Excavation and Haul-off	LF CY	170 25,300	\$5.00 \$40.00	\$850.00 \$1,012,000.00
25 26	P-152-4.1 P-152-4.2	Embankment in Place	CY	25,300 8,900	\$40.00	\$1,012,000.00
20	P-152-4.2 P-152-4.3	Subgrade Preparation	SY	76,400	\$3.00	\$100,000.00
28	P-155-8.1	Lime Treated Subgrade, 16-Inch Depth	SY	63,600	\$16.50	\$1,049,400.00
29	SP-100-3.4	In-place Drying Techniques	SY	6,400	\$1.50	\$9,600.00
30	SP-100-3.5	Subgrade Stabilization, Excavation Below Subgrade	CY	1,300	\$70.00	\$91,000.00
31	SP-100-3.6	Multi-axial Geogrid	SY	2,000	\$6.00	\$12,000.00
32	P-209-5.1	Crushed Aggregate Base Course, P-209	CY	21,100	\$75.00	\$1,582,500.00
33	P-401-8.1	Asphalt Concrete Surface Course, P-401	TON	15,600	\$165.00	\$2,574,000.00
34	P-621-5.1	Grooving	SY	200	\$7.00	\$1,400.00
35	D-701-5.1	12-inch RCP, Class IV, outside Pavement Areas	LF	200	\$250.00	\$50,000.00
36	D-701-5.2	12-inch RCP, Class IV, within Pavement Areas	LF	340	\$300.00	\$102,000.00
37	D-705-5.1	Underdrain Pipe, 6-Inch, Perforated	LF	9,000	\$45.00	\$405,000.00
38	D-705-5.2	Underdrain Pipe Cleanout	EA	37	\$500.00	\$18,500.00
39	D-751-5.1	48" Stormdrain Manhole	EA	14	\$7,000.00	\$98,000.00
40	D-751-5.2	Catch Basin/Drop Inlet	EA	2	\$10,000.00	\$20,000.00
41	D-751-5.3	Adjust Catch Basin to Grade Connect to Existing Manhole/Basin	EA	1	\$5,000.00	\$5,000.00
42 43	D-751-5.4 D-754-5.1	Construct Concrete Valley Gutter and Apron	EA LF	4 120	\$2,500.00 \$50.00	<mark>\$10,000.00</mark> \$6,000.00
43	P-153-6.1	Controlled Low-Strength Material (CLSM) for Existing Utility Protection	CY	300	\$30.00	\$9,000.00
45	L-108-5.1	No. 8 AWG 5 kV, L-824, Type C Cable, Installed in Duct Bank or Conduit	LF	20,800	\$2.50	\$52,000.00
-10	2 100 0.1	No. 6 AWG Bare Counterpoise Wire, Installed Adjacent to / In the Duct Bank or	<u></u>	20,000	φ2.00	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
46	L-108-5.2a	Conduit	LF	13,400	\$2.00	\$26,800.00
47	L-110-5.1	Concrete Encased Electrical Duct Bank, 1W - 2" Conduit	LF	6,600	\$50.00	\$330,000.00
48	L-110-5.3	Concrete Encased Electrical Duct Bank, 5W - 2" Conduit	LF	100	\$80.00	\$8,000.00
49	L-110-5.5	Non-encased Electrical Duct Bank, 1W - 2" Conduit	LF	6,600	\$25.00	\$165,000.00
50	L-110-5.6	Non-encased Electrical Duct Bank, 2W - 2" Conduit	LF	490	\$38.00	\$18,620.00
51	L-110-5.7	Non-encased Electrical Duct Bank, 3W - 2" Conduit	LF	160	\$45.00	\$7,200.00
52	L-110-5.9	Concrete Encase Existing FAA Line Under Proposed Pavement	LF	400	\$40.00	\$16,000.00
53	L-110-5.10	Concrete Encase Existing FAA Line Outside Pavement	LF LF	30	\$40.00	\$1,200.00
54 55	L-110-5.11	Lower and Concrete Encase FAA Line	EA	70 1	\$60.00	\$4,200.00
55 56	L-115-5.1a L-115-5.1b	Construct Electrical Pullbox: Aircraft Rated Construct FAA Pull Box	EA	1 5	\$10,000.00 \$12,000.00	\$10,000.00 \$60,000.00
57	L-115-5.1c	Construct Junction Can: L-868 with Lid	EA	2	\$12,000.00	\$6,000.00
57	L-115-5.10 L-125-5.1t	Construct New L-858(L) Airfield Guidance Sign (F1) and Concrete Pad	EA	2	\$3,000.00	\$6,000.00
59	L-125-5.1u	Construct New L-858(L) Airfield Guidance Sign (F1) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
60	L-125-5.1v	Construct New L-858(L) Airfield Guidance Sign (F2) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
61	L-125-5.1w	Construct New L-858(L) Airfield Guidance Sign (F3) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
62	L-125-5.1x	Construct New L-858(L) Airfield Guidance Sign (F5) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
63	L-125-5.1y	Construct New L-858(L) Airfield Guidance Sign (F6) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
64	L-125-5.1z	Construct New L-858(L) Airfield Guidance Sign (F7) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
65	L-125-5.1aa	Construct New L-858(L) Airfield Guidance Sign (F8) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
66	L-125-5.1bb	Construct New L-858(L) Airfield Guidance Sign (F9) and Concrete Pad	EA	1	\$6,000.00	\$6,000.00
67	L-125-5.2	Install Salvaged Unlit Informational Sign on Existing Concrete Pad	EA	1	\$1,000.00	\$1,000.00
68	L-125-5.3	Install Salvaged Unlit Informational Sign on New Concrete Pad	EA	1	\$3,000.00	\$3,000.00
		Construct New L-861T(L) Medium Intensity Elevated Taxiway Edge Light and Base			* 0.000.00	#404 000
69	L-125-5.9	Can Construct New L-852T(L) Medium Intensity In-Pavement Taxiway Edge Light and Base	EA	70	\$2,300.00	\$161,000.00
70	L-125-5.10	Construct New L-6521(L) Medium mensity in-Pavement Taxiway Edge Light and Base	EA	66	\$2,500.00	\$165,000.00
70	L-125-5.12	Install ID Tag	EA	136	\$75.00	\$10,200.00
72	L-125-5.14	Change Sign Legend	EA	8	\$800.00	\$6,400.00
73	P-620-5.2a	Marking, 2 Coats with Beads (All Colors)	SF	22,100	\$3.00	\$66,300.00
74	P-620-5.2c	Marking, Single Coat with No Beads (All Colors)	SF	57,400	\$1.50	\$86,100.00
		Marking, Single Coat with Beads (All Colors)	SF	10,600	\$2.00	\$21,200.00
75	P-620-5.2d					
75 76	P-620-5.2d T-901-5.1	Seeding	AC	9	\$5,000.00	\$45,000.00